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Absfract—This paper describes a language-based approach for automatic and ac-
curate cost-bound analysis. The approach consists of transformations for building
cost-bound functions in the presence of partially known input structures, symbaolic
evaluation of the cost-bound function based on input size parameters, and optimiza-
tions to make the overall analysis efficient as well as accurate, all at the source-language
level. The calculated cost bounds are expressed in terms of primitive cost parame-
ters. These parameters can be obtained based on the language implementation or be
measured conservatively or approximately, yielding accurate, conservative, or approx-
imate time or space bounds. We have implemented this approach and performed a

number of experiments for analyzing Scheme programs. The results helped confirm
the accuracy of the analysis.

Inder Terms—Cost analysis, Cost bound, performance analysis and measurements,
program analysis and transformation, program optimization, timing analysis, time

analysis, space analysis, worst-case execution time.

1 Introduction

Analysis of program cost, such as running time and space consumption, 18 important for
real-time svstems, embedded systems, interactive environments, compiler optimizations,

performance evaluation, and many other computer applications. It has been extensively
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studied in many fields of computer science: algorithms [25, 16, 17, 33|, programming lan-
puages [30, 26, 41, 44], and systems [46, 37, 43, 42]. It is particularly important for many
applications, such as real-time syatems and embedded systems, to be able to predict accurate
time bounds and space bounds automatically and efficiently, and it is particularly desirable
to be able to do so for high-level languages [46, 37, 38)].

For analyzing system running time, since Shaw proposed timing schema for high-level
languages [46], a number of people have extended it for analysis in the presence of compiler
optimizations [37, 12|, pipelining [20, 28], cache memaory [4, 28, 14], ete. However, there
remaing an obwvious and serious limitation of the timing schema, even in the absence of
lowe-level complications. This is the inability to provide loop bounds, recursion depths,
or execution paths antomatically and accurately for the analysis [36, 3]. For example, the
inaccurate loop bounds cause the caleulated worst-case time to be as much as 67% higher than
the measured worst-case time in [37], while the manual way of providing such information
is potentially an even larger source of error, in addition to its inconvenience [36]. Various
program analysis methods have been proposed to provide loop bounds or execution paths [3,
13, 19, 21]; they ameliorate the problem but can not completely solve it, because they apply
only to some classes of programs or use approximations that are too crude for the analysis.
Similarly, loop bounds and recursion depths are needed also for space analysis [38].

This paper describes a language-based approach for automatic and accurate cost-bound
analysis. The approach combines methods and techniques studied in theory, languages, and
ayatems. We eall it a language-based approach, because it primarily exploite methods and
techniques for static program analysis and transformation.

The approach consists of transformations for building cost-bound functions in the pres-
ence of partially known input structures, symbolie evaluation of the cost-bound function
based on input size parameters, and optimizations to make overall the analysis efficient as
well as accurate, all at the source-language level. We describe analysis and transformation
alporithms and explain how they work. The caleulated cost bounds are expressed in terms of
primitive cost parameters. These parameters can be obtained based on the language imple-
mentation or be measured conservatively or approximately, vielding accurate, conservative,
or approximate time or space bounds. The cost analysis eurrently does not include cache
analysis. We have implemented this approach and performed a number of experiments for

analyzing Scheme programs. The results helped confirm the accuracy of the analysis. We



describe our prototype system, ALPA, as well as the analysis and measurement results.
This approach is general in the sense that it works for multiple kinds of cost analysis.
Chur main analysis sums the cost in terms of different operations performed; it gives upper
bounds for all kinds of operations, such as arithmetic operations, data field selections, and
constructor allocations. Variations of it can analyze stack space, live heap space, output
size, ete., and can analyze lower bounds as well as upper bounds. The basic ideas also apply

Lo other programming languages.
The rest of the paper is organized as follows. Section 2 cutlines our language-based ap-

proach. Sections 3, 4, and 5 present the analysis and transformation methods and techniques.
Section 6 deseribes our implementation and experimental results. Section 7 compares with

related work and comncludes.

2 Language-based approach

2.1 Cost and cost bound

Language-based cost-bound analysis starts with a given program written in a high-level
language, such as C or Lisp. The first step is to build a ecost function that {takes the
same input as the original program but) returns the cost in place of {or in addition to) the
original return value. This is done easily by associating a parameter with each program
construct representing its cost and by summing these parameters based on the semantics of
the constructs [30, 10, 46]. We call parameters that describe the costs of program constructs
primitive cost porameters, To calculate actual cost bounds based on the cost function, three
difficult problems must be solved.

Firat, since the goal is to caleulate cost without being given particular inputs, the cal-
culation must be based on certain assumptions about inputs. Thus, the first problem is to
characterize the input data and reflect them in the cost function. In general, due to imperfect
knowledge about the input, the cost function is transformed into a cost-bound funclion.

In algorithm analysis, inputs are characterized by their size; accommaodating this requires
manual or semi-automatic transformation of the cost (time or space) function [50, 26, 53].
The analysis is mainly asymptotic, and primitive cost parameters are considered independent
of input size, ie., are constants while the computation iterates or recurses, Whatever values

of the primitive cost parameters are assumed, a second problem arises, and it is theoretically



challenging: optimizing the cost-bound function to a clesed form in terms of the input
size [50, 10, 26, 41, 17, 7]. Although much progress has been made in this area, closed forms
are known only for subeclasses of functions. Thus, such optimization can not be automatically
done for analyzing general programs.

In systems, inputs are characterized indirectly wsing loop bounds or execution paths in
programs, and such information must in general be provided by the wser [46, 37, 36, 28],
even though program analyses can belp in some cases [3, 13, 19, 21]. Closed forms in
terms of parameters for these bounds can be obtained easily from the cost function. This
isolates the third problem, which is most interesting to systems research: obtaining values of
primitive cost parameters that depend on compilers, run-time systems, operating systems,
and machine hardwares. In recent vear, moch progress has been made in analyzing low-level
dynamic factors, such as clock interrupt, memory refresh, cache usage, instruction scheduling,
and parallel architectures, for time analysis [37, 4, 28, 14]. Nevertheless, inability to compute
loop bounds or execution paths antomatically and accurately has led caleulated bounds to
be much higher than measured worst-case time.

In programming-language area, Rosendahl proposed using partially Enown input struc-
fures [41]). For example, instead of replacing an input list [ with its length n, as done in
algorithm analysis, or annotating loops with numbers related to n, as done in systems, we
simply use as input a list of n unkonown elements. We call parameters, such as n, for de-
seribing partially known input structures inpul size porameters. The cost function is then
transformed automatically into a cost-bound function: at control points where decisions de-
pend on unknown values, the maximum cost of all possible branches is computed; otherwise,
the cost of the chosen branch is eomputed. Rosendahl concentrated on proving the correct-
negs of this transformation. He assumed constant 1 for primitive cost parameters and relied
on optimizations to obtain closed forms in terms of input size parameters, but again closed

forms can not be obtained for all cost-bound functions.

2.2 Language-based cost-bound analysis

Combining results from theory to systems, and exploring methods and techniques for static
program analysis and transformation, we have studied a language-based approach for com-
puting cost bounds automatically, efficiently, and more accurately. The approach has three

main components,



First, we use an automatic transformation to construct a cost-bound funetion from the
original program based on partially known input structures. The resulting funetion takes
input size parameters and primitive cost parameters as arguments. The only caveat here is
that the cost-bound function might not terminate. However, nontermination occurs only if
the recursive/iterative structure of the original program depends on unknown parts in the
given partially known input structures.

Then, to compute worst-case cost bounds efficiently without relyving on closed forms,
we optimize the cost-bound function symbolically with respect to given values of input
gize parameters. This i based on partial evaluation and incremental computation. This
symbolic evaluation always terminates provided the cost-bound function terminates. The
resulting function expresses cost bounds as counts of different operations performed, where
the cost of each kind of operations is denoted by a primitive cost parameter.

A third component consists of transformations that enable more accurate cost bounds
to be computed: lifting conditions, simplifying conditionals, and inlining nonrecursive fune-
tions. The transformations should be applied on the original program before the cost-bound
function is constructed. They may result in larger code size, but they allow subcomputations
based on the same control conditions to be merged, leading to more accurate cost bounds,
which can be computed more efficiently as well.

The approach is general because all three components we developed are based on general
methods and technigques. Each particular component i8 not meant to be a new analysis or
transformation, but the combination of them for the application of antomatic and accurate
coat-bound analysis for high-level languages is new. In the resulting cost bounds, primitive
cosl parameters can be obtained based on the language implementation or be measured
conservatively or approcdmately, to give accurate, conservative, or approximate time or space
bromneds.

We have implemented the analyses and transformations for a subset of Scheme [2, 11, 1],
a dialect of Lisp. All the transformations are done automatically, and the cost bounds,
expressed as operation counts, are computed efficiently and accurately. Example programs
analyzedd include a number of classical sorting programs, matrix computation programs,
and various list processing programs. We also estimated approximate bounds on the actual
running times by measuring primitive cost parameters for running times using control loops,

and caleulated accurate bounds on the heap space allocated for construetors in the programs



based on the number of bytes allocated for each constructor by the compiler. We used a

funetional subset of Seheme for throe reasons.

1) Functional programming languages, together with features like automatic garbage col-
leetion, have become increasingly widely used, yet work for caleulating actual running

time and space of functional programs has been lacking.

2] Much work has been done on analyzing and transforming functional programs, inelud-
ing complexity analysis, and it can be used for estimating actual running time and

space efficiently and accurately as well.

3) Analyses and transformations developed for functional language can be applied to

improve analyses of imperative languages as well [52],

All our analyses and transformations are performed at the source level. This allows im-
plementations to be independent of compilers and underlying systems and allows analysis

resulta to e understood at source level.

2.3 Language

We use a first-order, call-by-value functional language that has structured data, primitive
arithmetic, Boolean, and comparison operations, conditionals, bindings, and mutually re-
cursive function calls. A program is a set of mutually recursive function definitions of the

form
flog, o) 2e

where an expression e is given by the grammar below:"

e o= variable reference
r.'l:r_'l, vees ::'1-,] data eongtraction
Py, s ) primitive operaticn

if &1 then ¢ else ¢y conditional expression
let v = ¢, in ey end  binding expression
Flen, o ey) function application

For binary primitive operations, we will be changing between infix and prefix notations

depending on whichever is easier for the presentation. Following Lisp and Scheme, we use

'"The keywords are taken from ML [5]. Owur Implementation supports both this syntax and Scheme
E¥OLAY.



cores(f, £ 1o construct a list with head & and tail ¢, and use car(l) and edr(l) to select the
head and tail, respectively, of list I. We use nil to denote an empty list, and use null(l) to
test whether {18 an empty list. For example, the program below selects the least element in

a non-empty list.

least(r) £ if null{cdr(z)) then car(x)
else let s = least(edr{z))
in if car{x) < 5 then cor(r) else s end

We use leas! as a emall running example. To present various analyeis results, we also use
several other examples: insertion sort, selection sort, merge sort, set union, list reversal
(the standard linear-time version), and reversal with append (the standard quadratic-time
version).

Bwven though this language is small, it is Eu[ﬁ:‘.itnr.l:.r powerlul and eonvenient to write
sophisticated programs. Structured data is essentially records in Pascal, structs in C, and
constructor applications in ML. Conditionals and bindings easily simulate conditional state-
ments and asgsignments, and recursions can simulate loops. We can also see that cost analveais
in the presence of arrays and pointers is not fundamentally harder [37], because the costs
of the program constructs for them can be counted in a similar way as costs of other con-
structs. For example, accessing an array element afi] has the cost of accessing 4, offsetting
the element address from that of a, and finally getting the value from that address. Note
that side effects caused by these features often cause other analysis to be difficule [9, 22]
For pure functional languages, higher-order functions and lazy evaluations are important.
Cost functions that accommodate these features have been studied [49, 44]. The symbolic

evaluation and optimizations we describe apply to them as well.

3 Constructing cost-bound functions

3.1 Constructing cost functions

We first transform the original program to construct a cost function, which takes the original
input and primitive cost parameters as arguments and returns the cost. This is straightlor-
ward based on the semanties of the program constructs.

Given an original program, we add a set of cost functions, one for each original function,

which simply count the cost while the original program executes. The algorithm, given below,
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is presented as a transformation C on the original program, which calls a transformation C,
to recursively transform subexpressions. For example, a variable reference is transformed
into a symbol Cyuprep representing the cost of a variable reference; a conditional statement
is transformed into the cost of the test plus, if the condition i3 true, the cost of the true
branch, otherwise, the cost of the false branch, and plus the cost for the transfers of control.

We use ¢f to denote the cost function for f.

Filog, vy, ) 2 ey Hilv v ) 2 e efilvg,u) 26 [
program: C || .. = ..

Fltn, oy tin ) 2 € Tl e tn) 2 ems efmity, cntn ) 26 [em];
variable reference: o] = f.-‘w"‘r
data construction: G, fe(ey, .., e, )] = add([Ce, Cefen] - Ce [ea])
primitive operation: G [pleg, ..., eg]] = udd[ﬂp, Ce le1] s s Ce fenl)
conditional: Ce[if ¢; then e, else ] = udd[ﬂiir: Celeq] i ¢ then C, [¢] else C; [¢4])
binding: Ce[let v = e in ez end] = add(Cie, Ce [ed]  let v = ¢y in Ce [ex] end)
function call: e || = add(Cep, Ce 1]y oo Ce Jen) s e (1, ooy 20))

Applying this transformation to program [easf, we obtain lunction least as originally
given and cost function cleast below, where infix notation is used for additions, and un-
necessary parentheses are omitted. Note that various C's are indesd arguments to the cost

function eleast; we omit them from argument positions for ease of reading.

r_'{r.'ﬂ.'st[.l:] = f?u b Ot + Coge + f.:‘m,"‘r
A AF reeliledr () then O, 4 If:'m,,,,f
else Ciyp + Cogy + Clogr + Sﬂﬂ"-‘-f + cleast{edr ()
i let s = least{edr{x))
j-'l-'l-{:'.lf | {:-{ | {:-mr | ﬂwre,l' | Euu.rrtj
FOAE car(x) < s then Oy & Oy else O] end))

This transformation is similar to the local cost assignment [50], step-counting fune-
tion [41], cost function [44], ete. in other work., Our transformation extends those methods
with bindings, and makes all primitive cost parameters explicit at the source-language level.
For example, each primitive operation p is given a different symbol Cp, and each constructor
¢ 18 given a different symbol Cp. Note that the cost function terminates with the appropriate
sum of primitive cost parameters if the original program terminates, and it runs forever to
sum to infinity if the original program does not terminate, which is the desired meaning of

a cost function.



3.2 Constructing cost-bound functions

Characterizing program inputs and capturing them in the cost function are difficult to auto-
mate (50, 26, 46]. However, partially known input structures provide a natural means [41].
A gpecial value unknouwn repregents unknown values. For example, to capture all input lists

of length n, the following partially known input structure can be used.

list(n) 2 if n = 0 then nil
else cons(unknomon, list{n — 1))

Similar structures can be used to deseribe an ATTAY of n elements, a matrix of mm-by-1t
elements, a complete binary tree of height &, ete.

Since partially known input structures give incomplete knowledge about inputs, the orig-
inal functionsg need to be transformed to handle the special value undnewn. In particular,
for each primitive function p, we define a new [unction fp such that fp[-i.:l, coos T | TELUENS
urkniown if any v is wnknown and returns plyg, ..., v,) as usual otherwise. For example,
felv,mg) 2 if vy = unknown v vy = unknown then unknown else v, < vy, We also
define a new [unction [ub, denoting least upper bound, that takes two values and returns
the most precise partially known structure that both values conform with. For example, if

wy = ecoms( 3, nil) and vy = cons(4, ndl), then lublv,, vy) = cons{unknown, nil).

fp[-i.:h oo g ) 2 if v, = unknoun Dubiny, vy) 2 if v, is ey, ey} A
VoW vy 18 CalYr, o ) N
Uy = unkrio = A T=]
then unknown then e (lub{z, 1), ..., lub{zy, w))
else plu, ... vy else unknown

Also, the cost functions need to be transformed to compute an upper bound of the cost: if
the truth value of a conditional test. 18 known, then the cost of the chosen branch is computed
normally, otherwise, the maximum of the costs of both branches is computed. Transforma-
tion B, given below, embodies these algorithms, where B, transforms an expression in the
original functions, and B, transforms an expression in the cost functions. We use uf to de-

note function f extended with the value enknown, and we use ebf to denote the cost-bound



function for f.

Jilve, v ) 2 e efilvn, v ) 2 el;
program: B
Sty e ) 2 ems efmley, ovg, ) 2 el
wfilug, o tin, ) 2R, e ebfileg, vy = B.[#]; fp[-i.:l, oo g ) 2 .. as above
wfn( v, e o )2 Belem]s ebfmlvi, o ve, )2 Bo[el ] lub{ey, vs) £ ... as above

variable reforence: B. [+ =1

data construction: B.[eleg, ..eq)] = e[Be[e] s oy Be[en])

primitive operation: Belpler, . en] = fp{Be[ed] . -, Be fea])

conditional: B.[ife, then e, else ¢ = let v = B, o]
in if © = unknown then luble), )

else if v then ¢, else ¢ end

where &), = B, [ea], €y = B, [es]

binding: B.[let v = ¢, in ey end] = let v = B, |¢,] in B, [ey] end

function call: B.[Fler, o en)] = uf{B.[el] -, Be [enl)

primitive cost parameter: B, [C) =

summation: Be[add{es, ..., ex]] = add(B: [¢1], ..., Be[ex])

conditional: B.[if e, then e, else o] = let v = B, [¢]
in if v = unknown then mor (E;: ey

else if v then ¢, else ¢} end

where e}, = B, [eq], ¢ = B [ed]

binding: B let v = ¢, in ey end] = let v = B, [¢,] in B, [eq] end

funetion ecall: Bolefleg,eq] = ebf (B, [e1], .- Be[ea])

Applying this transformation on functions leas! and eleast vields functions uleast and
chleast below, where function fp for each primitive operator p and lunction lub are as given

above. Shared code is presented with where-clanses when this makes the code smaller.

uleast{x) 2 let v = Jott fear (2]}
in if v = unknewr then luble, e2)
else if v then ¢, else ¢, end
where ¢ = [ (2]
ey = let s = uleasti fo4,(x))
inlet v = fo{ [ lz), #)
in if v = unknown then lub{ [ (x), 5)
else if v then [ (r] else s end end

10



chleast(r) 2 Cy + Crant + Cotr + Cuarres
Filet v = fouil( fear(x))

in if v = unknown then mazx(e;, o)
else if v then ¢, else ¢, end)
where e, = Ol 4 {:'mf
es = Clap + Cogtp + Coge ﬂw"‘r Felleast( foa(2])
. [lﬂ-t. 8= uﬂfu.l;llif.wl::r:}]
in f-:'lf T ﬂ{ T I'-d--':ln-.n.r | ﬂum‘r | {:.um-cf

Hlet v = fe[ fear(x], 3)
if © = unknown then maz{C, ﬂwre,hﬂwrtj}
else if v then O, + Cluppey else Oy end] end)

The resulting cost-bound function takes as arpuments partially known input structures,
such as lisi(n), which take as arguments input size parameters, such as n. Therelore, we
can obtain a resulting function that takes as arguments input size parameters and primitive
cost parameters and computes the most accurate cost bound possible.

Both transformations £ and B take linear time in terms of the size of the program, so
they are extremely efficient, as also seen in our prototype system ALPA. Note that the
resulting cost-bound function might not terminate, but this occurs only if the recursive
structure of the original program depends on unknown parts in the partially known input
structure. As a trivial example, il partially known input structure given is wnknown, then the
corresponding cost-bound function for any recursive function does not terminate, since the
original program does cost infinite resource in the worst case. We can modify the analysis
to detect nontermination in many cases, as for example in [27]. For the example of giving
urtknown Lo a recursive cost-bound function, nontermination is trivial to detect, since the

arguments to recursive calls would remain unbnown.

4 Optimizing cost-bound functions

This section describes symbaolic evaluation and optimizations that make computation of eost
bounds more efficient. The transformations consist of partial evaluation, realized as global
inlining, and incremental computation, realized as local optimization.

We first point out that cost-bound functions might be extremely ineflicient to evaluate
given values for their parameters. In fact, in the worst case, the evaluation takes exponential
time in terms of the input size parameters, sinee it essentially searches for the worst-case

execution path for all inputs satisfying the partially known input structures.
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4.1 Partial evaluation of cost-bound functions

In practice, values of input size parameters are given for almoest all applications. This is
why time-analysis technigques used in systems can require loop bounds from the user before
time bounds are computed. While in general it is not possible to obtain explicit loop bounds
automatically and accurately, we can implicitly achieve the desired effect by evaluating the
coat-bound function symbolically in terms of primitive cost parameters given specific values
of input size parameters.

The evaluation simply follows the structures of cost-bound functions. Specifically, the
control structures determine conditional branches and make recursive function calls as usual,
and the only primitive operations are sums of primitive cost parameters and maximums
among alternative sums, which can easily be done symbolically. Thus, the transformation
inlines all function calls, sums all primitive cost parameters symbolically, determines con-
ditional branches if it can, and takes maximum sums among all possible branches if it can
naot.

The symbolic evaluation £ defined below performs the transformations. It takes as ar-
puments an expression e and an environment p of variable bindings (where each variahle
is mapped to its value)] and returns as result a symbolic value that containg the primitive
cost parameters. The evaluation starts with the application of the cost-bound function to
a partially unknown input structure, eg., cbleast(list(100)), and it starts with an empty
environment. We assume that odd, is a function that symbolically sums its arguments, and

e, 18 a function that symbolically takes the maximum of its arguments.

variable reference: Elu] g = plv)
look up binding of v in environment
primitive cost parameter: £[C] g =
data construction: Eleler, .. en)]p = e[€Jed] p, -y £ [en] p)
primitive operation: Elple, . enllp = plEledp, . Elen] )
summation: Eladd{er, ....en)] p = addy(E [e1] p, ... € [en] p)
maximmm: Emaziey, ....exl]p = max, (£ [ed g, .0 E [ea] )
conditional: Elif ¢y then ey else o3 p = Efeg]p i E]ey] p = true
Eleslp il Eeq) p = false
binding: Elet v = ¢, in ey end] p = £ [eg] plvv £ Je] o]
bind v to value of &, in environment
function calls: E[flen, ..., enllp = Ee plvy v Eeg] oy ooy g 2 Eea] pl

where [ is defined by flv,, ... 1) 2 ¢

As an example, applying symbolic evaluation to chleast on a list of size 100, we obtain

12



the following result:

elleast{list{100)) & 497 & Clugrres + 100 # Crap 4+ 199 % Cogr + 199 & Clgr
F 099 s O lﬂﬂmﬂ,‘r F 09 e Oy + 99 & O

This symbaolic evaluation is exactly a specialized partial evaluation. It is fully automatic
and computes the most accurate cost bound possible with respect to the given program
structure. [t always terminates as long as the cost-bound function terminates.

The symbolic evaluation given only values of input size parameters is inefficient compared
to direct evaluation given values of both input size parameters and particular primitive cost
parameters, even though the resulting function takes virtually constant time given any values
of primitive cost parameters. For example, directly evaluating a quadratie-time reverse hine-
tion [that uses append operation) on input of size 20 takes about 0.96 milliseconds, whereas
the symbolic evaluation takes 670 milliseconds, bundreds of times slower. We propose further

optimizations below that greatly speed up the symbolic evaluation.

4.2  Avoiding repeated summations over recursions

The symbolic evaluation above is a global optimization over all cost-bound functions in-
volved. During the evaluation, summations of symbolic primitive cost parameters within
each function definition are performed repeatedly while the computation recurses. Thus, we
can spead up the symbolic evaluation by first performing such summations in a preprocessing
step. Specifically, we create a vector and let each element correspond to a primitive cost
parameter. The transformation 8, given below, performs this optimization. We use vebf to
denote the transformed cost-bound function of f that operates on vectors. 'We use function
add, to compute component-wise sum of the argument vectors, and we use function mar,

Lo compute component-wise maximum of the argument vectors.

ebfi{vy, .ty ) = €13 vebfi{vy, ., tg, ) = Sefei];
program: S || .. = ..
ebfn (v, e ¥ ) = Emi veb o (v, o v, ) = Selem];
primitive cost parameter: S, [C] = greate a vector of 08 except with the
component, corresponding to O set to 1
summation: Seladdey, ...eq)] = add, (S [el], .-, S e
maximum: Semazie, ... eq)] = maz, (S [eq], ... Selen])
all others: Se el = &

13



Let V' be the ollowing vector of primitive cost parameters:
{cumcf-n {”_'_."“"1 Gm.r Gnu.lh 1:d--"\.mr: Gmﬂw Ir-i::-i:: I:d-?l,f': Gﬂch CMH}

Applying the above transformation on function ebleast vields function vebleast, where com-
ponents of the vectors correspond to the components of V', and infix notation 4, i8 used for

veetor additiomn.

vebleast|x) 2 =1,0,0,1,0,1,0,1,0,0 >

1 1 1

Fol let v = fouul( foar (7))

in if v = unknown then mar, (e, e2)
else if v then ¢, else ¢y end)
where ¢ = < 1,0,0,0,1,0,0,0,0,0 =
ey = < 1,0,0,0,0,1,0,0,1,1 > +, vebleast{edri{z))
Fol let s = uleast( fog ()
in <2.0,0,0,1,0,1.1.0,0 =

Fullet v = folfor(z), 8)
in if v = unknowne then < 1,0,0,0,1,0.0,0,0,0 =

else if v then < 1,0.0.0.1,0,0,0,0,0 >
else < 1,0,0.0,0,0,0,0,0,0 > end) end)

The cost-bound function chleast(r) is simply the dot product of vebleast{x) and V.

This transformation incrementalizes the computation over recursions to avoid repeated
summation. Again, this is fully automatic and takes time linear in terms of the size of the
coat-bound funetion.

The result of this optimization is drastic speedup of the evaluation. For example, opti-
mized symbolic evaluation of the same quadratic-time reverse on input of size 20 takes only
2,55 milliseconds, while direct evaluation takes 0.96 milliseconds, resulting in less than 3

times slow-down; it is over 260 times faster than symbolic evaluation without this optimiza-

L.

5 Making cost-bound functions accurate

While loops and recursions affect cost bounds mest, the accuracy of the cost bounds cal-
culated also depends on the handling of the conditionals in the original program, which is
reflected in the cost-bound function. For conditionals whose test results are known to be

true or false at the symbolic-evaluation time, the appropriate branch is chosen; so other
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branches, which may even take longer, are not considered for the worst-case cost. This is a
major source of accuracy for our worst-case bound.

For conditionals whose test results are not known at symbaolic-evaluation cost, we need to
take the maximum cost among all alternatives. The only case in which this would produce
inaccurate cost bound is when the test in a conditional in one subcomputation implies the
test in a conditional in another subcomputation. Por example, consider a variable » whose
value is wnbnewn and

¢ = if v then 1 else Fibonacei{ 1000)
ey = if v then Fiboracei{2000) else 2

If we compute the cost bound for ¢, + ey directly, the result is at least eF ibonacei{1000)
cFthornacei(2000}). However, il we consider only the two realizable execution paths, we know
that the worst case is eFiboracci(2000) plus some small constants. This i3 known as the
false-path elimination problem [3].

Two transformations, lifting conditions and stmplifying conditionals, applied on the source
program before constructing the cost-bound funetion, allow us to achieve the accurate anal-
vsis results. In each function definition, the former lifts conditions to the cutermost scope
that the test does not depend on, and the latter simplifies conditionals according to the lifted

condition. For e + ez in the above example, lifting the condition for e), we obtain
if © then 1+ ¢: else Fibonaeei(1000) + ez

Simplifying the conditionals in the two cecurrences of ey w0 Fibonaceis(2000) and 2, respec-

tively, we obtain
if v then 1 + Fibonacci[2000) else Fibonacei(1000) + 2.

To facilitate these transformations, we inline all fanction calls where the funetion i3 not
defined recursively.

The power of these transformations depends on reasonings used in simplifying the condi-
tionals, as have been studied in many program transformation methods [51, 45, 47, 18, 32].
Ar least syntactic equality can be used, which identifies the most obvious source of inac-
curacy. These optimizations also speed up the symbolic evaluation, since now obviously

infeasible execution paths are not searched.
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These transformations have been implemented and applied on many test programs. Even
though the resulting programs can be analyzed more accurately and more efficiently, we have
not performed separate measurements. The major reason is that our example programs do
not contain conditional tests that are implied by other conditional tests. These simple trans-
formations are just examples of many powerful program optimization techniques, especially
on functional programs, that can be used to make cost-bound function more accurate as well
as more efficient. We plan to explore more of these optimizations and measure their effects
as we experiment with more programs.

MNote that these transformations on the source program are aimed at making the cost-
bound function more accurate and more efficient, not at optimizing the source program.
Even though making the source program faster also makes the corresponding cost-bound
function faster, these two goals are different. Optimizing the source program is meant to
produce a different program that has a smaller cost. Cost analysis i3 meant to analyze
accurately the cost of a given program.

To make use of all the techniques for making cost-bound analysis efficient and accurate,
we perform an overall cost-bound analysis by applying the following transformations in order
to the source program: lifting conditions and simplifying conditionals (as in Section 5), con-
structing cost functions and then cost-bound functions (as in Section 3), and precomputing

repeated local summations and then performing global symbolic evaluation [as in Section 4).

6 Implementation and experimentation

We have implemented the analysis approach in a prototype system, ALPA (Automatic
Language-based Performance Analyzer). We performed a large number of experiments and

ohtained encouraging pood results.

6.1 Implementation and experimental results

The implementation is for a subset of Scheme [2, 11, 1]. An editor for the source programs is
implemented using the Synthesizer Generator [40], and thus we can easily change the syntax
for the source programs. For example, the current implementation supports both the syntax
used in this paper and Scheme syntax. Construction of cost-bound functions is written in

S5L, a simple functional language used in the Synthesizer Generator. Lifting conditions,
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simplifying conditionals, and inlining nonrecursive calls are also implemented in S5L. The
symbolic evaluation and optimizations are written in Scheme.

Figure 1 gives the results of symbolic evaluation of the cost-bound functions for six
example programs on inputs of sizes 10 to 2000, For example, the second row of the figure

means that for insertion sort on inputs of size 10, the cost-bound function is

chinsertionsort(list{10]) £ 39] ﬂ'._.,,,,-t‘r B 11 e Oy + 55 % Clogne + 66 & Crun
b 100 & Coagr 4 35 % Oogr 4 45 & {le lll-hl'.?if b B3 gl

The last column lists the sums for every rows. For the set union example, we used inputs
where both arguments were of the given sizes. These numbers in the figure characterize
various aspects of the examples; they contribute to the actual time and space bounds dis-
cussed below. We verified that all numbers are also exact worst-case counts. For example,
for insertion sort on inputs of size 10, indeed 65 function calls are made during a worst-case
execution. The worst-case counts are verified by using a modified evaluator. These experi-
ments show that our cost-bound funetions can give accurate cost bounds in terms of counts
of different operations porformed.

Figure 2 compares the times of direct evaluation of cost-bound functions, with each prim-
itive cost parameter set to 1, and the times of optimized symbolic evaluation, obtaining the
exact symbolie counts as in Figure 1. These measurements are taken on a Sun Ultra 1 with
167TMHz CPU and 64MB main memory. They include garbage-collection time. The times
without garbage-collection times are all about 1% faster, so they are not shown here. These
experiments show that our optimizations of cost-bound functions allow symbolic evaluation
to be only a few times slower than direct evaluation rather than hundreds of times slower.

For merge sort, the cost-bound function constructed using the algorithms in this paper
takes several days to evaluate on inputs of size 50 or larger. Special but simple optimizations
were done to obtain the numbers in Figure 1, namely, letting the cost-bound function for
merge avold base cases as long as possible and using sizes of lists in place of lists of unknowns;
the resulting symbaolic evaluation takes only seconds. Such optimizations are vet to be
implemented to be performed automatically. For all other examples, it takes at most 2.7
hours to evaluate the cost-bound functions.

MNote that, on small inpute, symbaolic evaluation takes relatively much more time than
direct evaluation, due to the relatively large overhead of vector setup; as inputs get larger,

symbolic evaluation is almost as fast as direct evaluation for mest examples. Again, alter
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Figure 1: Results of symbolic evaluation of cost-bound functions.
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the symbolic evaluation, cost bounds can be computed in virtually no time given values of

primitive cost parameters.
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Figure 2: Times of direct evaluation vs. optimized symbaolic evaluation {in milliseconds).

Among over twenty programs we have analyzed using ALPA, two of them did not termi-
nate. One is quicksort, and the other is a contrived variation of sorting; both diverge because
the recursive structure for splitting a list depends on the values of unknown list elements.
This is similar to nontermination caused by merging paths in other methods [33, 34], but
nontermination happens much less often in our method, since we essentially avoid merging
paths as much as possible. We have found a different. symbolic-evaluation strategy that uses
a kind of incremental path selection, and the evaluation would terminate for both examples,
a3 well as all other examples, giving accurate worst-case bounds. That evaluation algorithm
is not yet implemented. A future work is to exploit results from static analysis for identify-
ing sources of nontermination [27] to make cost-bound analysis terminate more often. For
practical use of a cost-bound analyzer that might not terminate on certain inputs, we can
modify the evaluator so that if it is stopped at any time, it outputs the cost bound caleulated

till that point. This means that a longer-running analysis might yvield a higher bound.

6.2 Further experiments

We also estimated approximate bounds on the actual running times by measuring primitive
coat parameters for running times using control loops, and caleulated acourate bounds on the
heap space allocated for constructors in the programs based on the number of bytes allocated
for each constructor by the compiler. For time-bound analysis, we performed two sets of
experiments: the first for a machine with cache enabled, and the second for a machine with

cache disabled. The first gives tight bounds in most cases but has a few underestimations
for inputs that are very small or very large, which we attribute to the cache effects. The

second gives conservative and tight bounds for all inputs. We first deseribe experiments for
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time-hound analysis with cache enabled and for analysis of heap space allocation bound, and
then analyze the cache effects and show results for time-bound analysis with eache disabled.

The measurements and analyses for time-bounds are performed for source programs com-
piled with Chez Scheme compiler [8]. The source program does not use any library; in partic-
ular, no numbers are large encugh to trigger the bignum implementation of Chez Scheme. We
tried to avoid compiler optimizations by setting the optimization level to (); we view necessary
optimizations as having already been applied to the program. To handle garbage-collection
time, we performed separate sets of experiments: those that exclude garbage-collection times
in both caleulations and measurements, and those that include garbage-collection time in
both.? Our current analysis does not handle the effects of cache memory or instruction
pipelining; we approximated cache effects by taking operands circularly from a cycle of 2000
elements when measuring primitive cost parameters, as discussed further below. For time-
bound analysis with cache enabled, the particular numbers reported are taken on a Sun
Ultra 1 with 16TMHz CPU and 64MB main memory; we have also performed the analysis
for several other kinds of SPARC stations, and the results are similar.

Since the minimum running time of a program construct is about 0.1 microseconds, and
the precision of the timing function is 10 milliseconds, we use control /test loops that iterate
10,000,000 times, keeping measurement error under 0.001 micreseconds, Le., 1%, Such a loop
is repeated 100 times, and the average value is taken to compute the primitive cost parameter
for the tested construct (the variance is less than 10% in most cases). The caleulation of the
time bhound ig done by plugging these measured parameters into the optimized time-bound
function. We then run each example program an appropriate number of times to measure
its running time with less than 1% error.

Figure 3 shows the estimated and measured worst-case times for six example programs
on inputs of sizes 10 to 2000, These times do not include garbage-collection times. The item
mefea is the measured time expressed as a percentage of the caleulated time. In general, all
measured times are closely bounded by the caleulated times (with about 90-95% accuracy)
except when inputs are very small (20, in 1 case) or very large (2000, in 3 cases), which
is analyzed and addressed below. The measurements including garbage-collection times are

similar except with a few more cases of underestimation. Figure 4 depicts the numbers in

*We had eriginally teled to aveld garbage collection by writlng loops Instead of recursions as much as
possible and teled to exelude garbage-collection tlmes completely. The ldea of Lm:]udin;? Eﬂ.ﬂ e-collection
times connes from an earller experiment, where we mistakenly used a tlming function of Chee Schense that
Included garbage-collection time.
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|| Insertion sort splecilon sort OUETEE S0EL

size |paleulated |measured me fca |caleulated [measured | me /ca|ealeulated | measured |mefca
) DGTHL) L0GE00) 963 0LL351T| 012551 8929 OU1L1584| 0L1L0L3| 661
B0 02565E) 026726 LO0E|  05Z0AE| DATTR0) 90.2( 029186 027546 44
B0 LAGATO) 1482500 964| 3.26815 J.01125) 921 092702 085700 024
00y G.l4900( 586500 Ghd| 130187 L1LOGHE[ 91.09( 2.05224) LORRLZ| 024
2004 24A00G| 243187 00| BLOGTE| ATATHE| OL.d4| 490017 457200 033
o0 hHA.950E 53.8TI4) GRO| LLGR4T| 107250 OL8| T.AGIZ31| T.AGGOO0| 061
GO0 L2448 147.562) DGE| 324308 304.250( 093.8( 14.1198) 120800 919
1000 GO9L4G| GOG.000( G056 1207.06) 117T.50| 90.8) 31.2153| 2R.GTEL| 914
000 2435.20( A08L1.25( 12E.5) S1AT.0T) BARRTH| L06.7| GRAELG| GRATHED) 954G

( set union f list. reversal | reversal w/append
size |paleulated |measured me fca |jcaleulated [measured | me ca[|ealeulated | measured jmefca
) 010302 0.09812) 952 000008 00008 O2.8( 005232 0047700 013
B DARLSG| 0GIGLSG) 947 0.0LTOE| DOLGGL) 924 OU19340| 01ITR50( ROT
RO 22THLL) LAL1500) 920 004436 004193 9405(  L140a5( LOLOGO| REG
oy Bo%400( 2332500 0FL( O.08834| 008106 01.8( 447924 303600 BT.O
2004 ARA30L( 3343300 DL 0.ITG20| D.LGAGE( 020 IT.0R3L|) I5.E4GE| RO
o0y TOGDAT| THLOOG BA.Z|  0.2G424| 0.24437( 02.5| 39.83IH)| 35.G328| ROS
OO 220802 208.305) 04.3| 044003 040THN 92.5( LL0344| 102.775| 43l
1000 BER(@d| 330.780( 0O6.Z) 0.BTOBR| O.8TIEN| 93.5) 440561 300.700) B80T
00| 35RGAZ| 338531 OG0)  L.TRO3T) LGHTOO| 942 ITGO.61| 22ASTH) LET.O

Figure 3: Caleulated and measured worst-case times (in milliseconds) with cache enabled.

Figure 3 for inputs of sizes up to 1000. Examples such as sorting are classified as complex
examples in previous study [37, 28], where caleulated time is as much as 677 higher than
measured time, and where only the result for one sorting program on a single input [of size
10 [37] or 20 [28]) is reported in each experiment.

Using the cost bounds computed, we can also caloulate, accurately instead of approx-
imately, bounds on the heap space dynamically allocated for constructors in the source
programs. The number of bytes allocated for each constructor can be obtained precisely
based on the language implementation. For example, Chez Scheme allocates 8 bytes for a
cores-cell on the heap:; this information can also be obtained easily vsing its statistics utili-
ties. Based on results in Figure 1, by setting O, t0 8 and other primitive cost parameters
to 0, we obtain exact bounds on the heap space dynamically allocated for constructors in
the programs, as shown in Figure 5.

Consider the accuracy of the time-bound analysis with cache enabled. We found that
when inputs are very small (20), the measured time is occasionally above the caleulated

time for some examples. Also, when inputs are very large (1000 for measurements including
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Figure 4: Comparison of caleulated and measured worst-case times with cache enabled.
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glee || Insertion sort | selectlon sort | merge sort | sed unlon | st reversal | reversal wfapp.
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Figure 5: Bounds of heap space allocated for constructors (in bytes).

garbage-collection time, or 2000 excluding garbage-collection time), the measured times for
some examples are above the caleulated time. We attribute these to eache memory effects,
for the following reasons. First, the initial cache misses are more likely to show up on small
inputs. Second, underestimation for inputs of size 2000 in Figure 3 happens exactly for the
3 examples whose allocated heap space 18 very large in Figure 5, and recall that we used a
eveled data structure of size 2000 when measuring primitive cost parameters. Furthermore,
for programs that use less space, our caleulated bounds are accuracy for even larger input
sizes, and for programs that use extremely large amount of space even on small inputs, we
have much worse underestimation. For example, for Cartesian product, underestimation
oceurs for small input sizes (50 to 200); as an example, on input of size 200, the measured
time is 653% higher than the caleulated time.

We performed a second set of experiments for time-bound analysis for a machine with
cache disabled. The machine used s a Sun Ulira 10 with 333MHz CPU and 256MB main
memory. Figure 6 shows the estimated and measured worst-case times for the same six
programs on inputs of sizes 10 to 2000. These times do not include garbage-collection times.

We can see that all measured times are closely bounded by the calculated times, with no

underestimation. Figure 7 depicts the numbers in Figure 6.

To accommaodate cache effect in time-bound analysis with cache enabled, we could adjust
our measurements of primitive cost parameters on data structures of appropriate gsize. The
appropriate size can be determined based on a precise space usage analysis. Heap-space
allocation is only one less direct aspect. More directly, we can incorporate precise knowledge
about compiler-generated machine instructions into our analysis method. We leave this as a

future work. Our current method can be used for approximate time-bound estimation in the
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|| Insertion sort splecilon sort OUETEE S0EL

size |paleulated |measured me fca |caleulated [measured | me /ca|ealeulated | measured |mefca
)| 015222 (L14228) 935 020483 0.258G6) AT.7( 024955 0.23FT4 063
B0 0.5EIEG) OUG3ATTA) 9RT| LASTART| 1.00Ebd| A7.2( 063020 06030 658
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00| BRET.OL| S053.00( 0Ld4) LIAGRT) OV0400| 86.1) 148.8346| L33.TBG) 0932

( set union f list. reversal | reversal w/append
size |paleulated |measured me fca |jcaleulated [measured | me ca[|ealeulated | measured jmefca
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B 0.TATE0) 0UTTOGL) VT 004051 DO0GTAG) 93.5( O43258| 0.384T0( RREO
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Figure 6: Calculated and measured worst-case times (in milliseconds) with cache disabled.

presence of low-level effects or precise analysis in their absence, and can be used for more

accurate space-bound analysis that helps addressing memory issues.

7 Related work and conclusion

A preliminary version of this work appeared in [30]. An overview of comparison with related
work in cost analysis appears in Section 2. Certain detailed comparisons have also been dis-
cugsd while presenting our method. This section summarizes them, compares with analvaes
for loop bounds and execution paths in more detail, and concludes.

Compared to work in algorithm analysis and program complexity analysis [26, 44, 53, 7],
this work consistently pushes through symbolic primitive cost parameters, so it allows us
to caleulate actual cost bounds and validate the results with experimental measurements.
There is also work on analyzing average-case complexity [17], which has a different goal
than worst-case bounds. Compared to work in systems [46, 37, 36, 28], this work explores
program analysis and transformation techniques to make the analysis automatic, efficient,

and accurate, overcoming the difficulties cavsed by the inability to obtain loop bounds,
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recursion depths, or execution paths automatically and precisely. There is also work for
measuring primitive cost parameters for the purpose of general performance prediction [43,
42]. In that work, information about execution paths was obtained by running the programs
on a number of inputs; for programs such as insertion sort whose best-case and worst-case
execution times differ greatly, the predicted time using this method could be very inaccurate.

A number of technigues have been studied for obtaining loop bounds or execution paths
for time analysis [36, 3, 13, 19, 21]. Manual annotations [36, 28] are inconvenient and error-
prone [3]. Automatic analysis of such information has two main problems. First, even when
a precise loop bound can be obtained by symbolic evaluation of the program [13], separating
the loop and path information from the rest of the analysis is in general less accurate than an
integrated analysis [34]. Second, approximations for merging paths from loops, or recursions,
very often lead to nontermination of the time analysis, not just looser bounds [13, 19, 34].
Some newer methods, while powerlul, apply only to certain classes of programs [21]. In
contrast, our method allows recursions, or loops, to be congidered naturally in the overall
coat analysis based on partially known input structures. In addition, our method does not
merge paths from recursions, or loops; this may cause exponential time complexity of the
analysis in the worst case, but our experiments on test programs show that the analysis is
atill feasible for inputs of sizes in the thousands. We have also studied simple but powerful
optimizations to speed up the analysis dramatically.

In the analysis for cache behavior [14, 13, loops are transformed into recursive calls,
and a predefined callstring level determines how many times the fxed-point analysis iterates
and thus how the analysis results are approximated. Our method allows the analysis to
perform the exact number of recursions, or iterations, for the given partially known input data
structures. The work by Lundqgvist and Stenstrom [33, 34] is based on similar ideas as ours.
They apply the ideas at machine instruction level and can more accurately take into account
the effects of instruction pipelining and data caching, but they can not handle dynamically
allocated data structures as we can, and their method for merging paths for loops would
lead to nonterminating analysis for many more programs than our method. We apply the
ideas at the source level, and our experiments show that we can calculate more accurate cost
bound and for many meore programs than merging paths, and the calenlation is still efficient.
There are also methods for time analysis based on program How graphs [39, 6. Unlike our

method, these methods do not exploit given input sizes, and they require programmers Lo
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give precise path information.

The idea of using partially known input structures originates from Rosendahl [41]. We
have extended it to manipulate primitive cost parameters. We also handle binding constructs,
which is simple but necessary for efficient computation. An innovation in our method is
to optimize the cost-bound function wsing partial evaluation, incremental computation, and
transformations of conditionals to make the analysis more efficient and more accurate. Partial
evaluation [3, 24, 23], incremental computation [32, 31, 29], and other transformations have
been studied intensively in programming languages. Their applications in our cost-bound
analysis are particularly simple and clean; the resulting transformations are fully automatic
and efficient.

We have started to explore a suite of new language-based techniques for cost analysis,
in particular, analyses and optimizations for further speeding up the evaluation of the cost-
bound function. We have also applied our general approach to analyze stack space and live
heap space [48], which can further help predict garbage-collection and caching behavior. We
can also analvee lower bounds using a symmetric method, namely by replacing masimum
with minimum at all conditional points. A future work is to accommodate more lower-
level dynamic factors for timing at the source-language level [28, 14], by examining the
corresponding compiler generated code, where cache and pipelining effects are explicit.

In eonclusion, the approach we propose i3 based entirely on high-level programming
languages. The methods and techniques are intuitive; together they produce automatic
tools for analyzing cost bounds efficiently and accurately and can be used to accurately or

approximately analyze time and space bounds.
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