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Abstract. This paper describes a geoeral approach for avtomatic and
accnrate time-bound analysis. The approach consists of transformations
for building time boumd functions in the presence of partially known in-
put structures, symbolic evaluation of the time-bound function hased
an input parameters, optimimations to make the overall analyss efficient
as well as accurate, and measurements of primitive parameters, all at
the source-language leved, We have implemented this approach and per-
formed a oumber of experiments for analyzing Scheme programs. The
miasnred worst-cagse times are clasely boumaded by the caloulated baands.

1 Introduction

Analysls of program running time |5 impoetant for real-tlme systems, Interactlve
covironments, eompller optlmbzations, perflormance evaluation, and many other
computer applications. I has been extensively studled in many flelds of computes
sclence: algorithms [11, 8] pruﬂrmunm? languages [25, 12,20, 22], and systems
23,19, 21). I I8 particularly important for many applications, such @8 roal-time
syatoms, to be able to predict accurate time bounds automatically and efficlently,
a.ni:‘l it I8 particularly desirable to be able to do so for high-level languages [23,
19).

Slnce Shaw propesed tming schera lor analyzlng aystem runnlng time baged
ont high-leveal ]ar;%uagmdﬂﬂ], a number of people have extended it for analysis
in the presence of compller optimizations [!ﬁ, pipelining |13, cache memory (13,
7), ete. However, there remalns an obvious and serbous limitation of the timing
schema, even In the absence of low-lewe]l complications. This Is the nability
to provide loop bounds, recursion depths, or execution paths avtomatkeally and
accurately for the analysis (18, 1]. For example, the inaccurate loop hounds cause
ithe caloulated worst-case time (o be as much a8 675% higher than the messired
worst-case time in [19), while the manual way of providing such information
s potentially an even larger source of error, in additlon to its Inconvenience

18, Varlous program analysis methods have been proposed to provide loop
bounds or executlon paths [1,6.9). They ameliorate the problem but can not
completely solve I, hocause they apply only o some clagses of programs oF wse
approximations that are too crude for the analysis, and because separating the
loog and path Information feom the rest of the analysls = in general less accurate
than an integrated analysis [17].

Thiz paper describes a general approach for automatic and sccurate time-
bound analysis. The appeosch combines methods and technbgues studled in the-
ory, | g and systems. We call it a language-based approach, hecause it
]n'muifs]ulm methods and technigues for E{m?r: pngrmpiwl_-.rsls and trans-
Tormation.

* This work was partially supported by NSF under Grant OCH-8711255.



The approach conzlsts of transformations for bullding time-hound lanetions
in the presence of parclally known Input structuees, symbolic evaluation of the
thime-bpund function based on lnput parameters, optlmbzatbons to make overall
the analysls efficlent as well as accurate, and measuremvents of primitive param-
chers, all at the source-language level. We descelbe analysls and transformatbon
algorithms and explaln bow they work. We have mplemented this approeach
amd perlormed a large number of experlments analyzing Scheme programs. The
measured worst-case times are closely bounded by the calealated bounds. We
degeribe our prototype system, ALT'A, as well ag the analysis and measueement
resulis,

This approach 18 general o the sense that It works for other kiods of cost
analysls as well, such a8 space analysls and eutput-skee analysis. The hasic ldeas
also apply to other progeamming languages. Furthermore, the Implementatlon
is Independent of the underlylog systems [ecompllers, operatlng systems, and
hardwarea].

2 Language-based approach

Language-hased time-bound analysis starts with a glven program written In
a bhigh-level language, such as C or Lisp. The first step 18 to bulld a fimdng
Junction that (takes the same Input as the oelginal program but) returns the
running time o place of {or In addition to] the orlginal peturn value, This s
done easlly by mssociating & parameter with each program construet represont lng
Itz running time and by summing these parameters based on the semantles of
the constructs [25, 23], We call parameters that deseribe the running times of
program consteacts prinelive paramelers.

Slpce the goal 8 to calealate running tme without belng glven partheular
Inputs, the caleulation must be hased on certaln assumptlons about Inputs. Thus,
ithe flrst problem I8 v characterize the lnput dats and mefdect them In the tmlng
function. In general, due to Imperfect knowledge shout the nput, the timlog
function s transformed Into a de-bound fonclion.

In programming-language area, Rosendahl proposed the use of paridally ket
gl slructures to characterize Input data Hﬂ:‘.l] For example, Instead of replacing
an lnput list § with s length w, &8 done in algorithon analysls, oF anpotating
loops with numbers related to n, &8 done In systems, we simply wse as input a list
of i unknown eloments. We call parameters for describlng partially koown lnpaot
structures mpud garemelers. The timing lunctlon ls then transformed automat-
feally Into & thme-bound function: at conteol points where declslons depend on
unknown values, the maximum time of all possible branches 5 computed; oth-
erwlse, the time of the chosen branch s computed. Rosendahl concentrated on
proving the correctness of this transformation. He assumed constant 1 for prim-
itlve parameters and eelied on optlmbzations to obtain eloged forms o termms
of Input parameters, but closed forms can oot be obtalned for all tlme-bouond
Tunetions.

Comblning resulis fom theory to systems, we have studbed a general ap-
proach for computing time bounds automatically, efficlently, and more aceu-
rately. The approsch analyees programs wrltten ln a functional subset of schene.
Functional programming languages, together with featurves ke automatic garbage
collecibon, have begome Increasingly whdely wsed, yet work for ealeulating actnal
running thee of lunctbonal programs has been lacking. Analyses and transfor-
mations developed for functional language can be applied to Improve analyses
of imperative languages as well [26).



Language. We use a fest-order, eall-by-value lunctlonal language that has strue-
tured data, primitive arlthmetle, Boolean, and eomparison operations, condltion-
als. bindings, and mutually pegursive unction calls. For example, the peogeam
below selects the least eloment. ln a pon-empiy list.

least(x) = if null{cdr{z)} then car(x)
clse ot s = least{adrir])
in if mr(z) < s then cer(z) clse s end

To peesent various analysls results, we use the lollowlng examples: Insertlon
sort, selectbon sort (which uses Teast), mergesort, sef unbon, st meversal (the
standard lnear-tlme versbon ), and reversal with append [the standard guadratie-
thome wersion).

Even though this language ls small, It |s sufficlently powerful and convenient
to write sophistlcated programs. Stroctured data s essentlally records In Pascal
and C. We can also see that time analysis o the presence of arrays and point-
ers Is not fundamentally harder [19], because the running times of the program
consiructs Tor them ean he messured In the same way a8 times of other con-
structs. Note that side effects caused by these features often cause other analysis
to be difficult (4], For pure functional languages, higher-order functions and lazy
evaluations are important. Time-bound functions that accommodate these fea-
tures have been studled [24, 22]. The symbaolie evaluation and optimbations we
deseribe apply to them as well.

3 Constructing time-bound functions

Constructing Hoving fanctions. We Hrst transform the orlginal program to con-
struct a timing funcilon, which takes the original Input and primitive parameters
ag arguments and returns the running time. This s stralghtforward based on the
semantbes of the program constraetis

Czlven an original progran, we add a set of tming functlons, one for each
original function, which simply count the time while the orlginal program ex-
ceutes. The algporithin, given below, I8 presented as a transformathon Ton the
original program, which calls a transformation T o recurslvely transform subex-
pressions. For example, a varlable reference Is transformed into a symbol Tyoerees
representlng the runnlng thme of & varlable rolerence: a8 conditbonal statement s
translormeed Into the time of the test plus, if the condition 1s teue, the time of
the true branch, etherwise, the time of the false branch, and plus the time for
the transfers of control.

Aot =6 || (o ve) e Haforva) = Tl
Fo ey e Un, ) = Em; Smlvr,. o b= em e, ) = Tofem]
virriabde ceference: T, = .!"..,.n.
data constraction: ']':.HEL, ...,:ng = ‘]“.1 th T E.,.
primitive operation: [ ST . = T, T,

wonditimmal: T.hf - then =g-nlwnr1 Tip Ta .r :._ '|:]1|:|n T';EJI olze ‘.'.'; 1]}
hinding;: Ta ¥ = ¢ Imey en T;.g,']':. 1] et w=eqin [::.]

function call: Tlfler, ... enl] = add{Touse, Tale '-I:" oTafea] tfle, . ...]]

This transformation s similar to the local cost assignment [25], step-counting
funetion [20], cost funetion [22], ete. in other work. Our transformation handles
bindings and makes all primitive parameters explicit at the source-language level.
For example, each primitive gperation p s given a different symbol T, and each



consteuctor ¢ i85 glven a different symbol Te. Note that the timing function terml-
nated with the appropelate sum of primitive parameters iF the original program
terminates, and It runs forever w sum 1o Infinity i the original progeam does
not terminate, which Is the desived meaning of & thmlng functbon.

Constructing Hme-bound functions. Characterlzing program nputs amd captur-
ing them in the timing function are difficult to automate [25, 12, 23], However,
partially known Input strsctuves provide a natural meang En']- A gpecial value
arknown represents unknown values. For example, to capture all lnput Lsts of
lengih w, the following partially known Input structure can be gsed.
ligtin} = if n = then nif
else consunknown, list{n — 1})

Similar structiuees can be used to describe an array of 0 elements, ete.

Sionee partlally koown Input structuees give Incomplete koowledge about in-
puts, the orlglnal funcilons need to be transformed 1o handle the speclal value
wikriowsn. In parteular, for each primitive lunction g we deflne a new funetion
Jp such that folwn, ... ta] returns wnknown i any @ 8 wnknown and returns
71, o tin ) 85 usual otherwise. We also define a new Tunction Feb that takes two

ues and returns the most preclse partially known steacture that both values
conform with.

Felm, @ = if o = unknown  lwblv, ) = i v ds oz, .om) A

W vy i5 ex(g, ) A

e = unknown o= A=)
then unkreon then o (luwb(zy, gn ..., feb{ze )
wlse @, ... 6, olso unknown

Alsp, the timing unctlons nesd to be translormed o compute an upper bound
of the running time: I the teuth valpe of a conditional test s koown, then
the tlme of the choson branch s computed normally, etherwlse, the masimwm
of the times of both branches 8 computed. Transformation © embodies these
algorithms, where O, transforms an expressbon ln the original functions, and C;
transforms an expression in the timing funetions.
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The resulting time-bownd functlon takes a8 arguments partially konown lnput
strugtures, such as Hisf(n). which take as arguments Input parameters, such
ag s, Therefore, we can obtaln & resulting function that takes ag arguments
Input parametcrs amd primitlve parameters and computes the most accurate
ithime Bound possible,

Both transformations T and O take lnear time o teems of the ske of the
program, so they are extremely efficlent, as also seen in our profotype system
ALPA, Node that the resulilng tlme-bound function may not terminate, bt
this eeeurs only H the recursive structuee of the orlginal progeam depends on
unknown parts In the partlally known nput structure. As a teivial example, I
partially known Input structuee given & ankoaewsi, then the corresponding time-
bound function for any pecursive lunctbon does oot teeminate.

4 Optimizing time-bound functions

Thiz section deseribes symbolic evaluatlon and optlnbations that make oom-
putatbon of time bounds morme efflclent. The translormations conslst of partial
cwvaluation, reallzed as global Inlining, and Increment al computation, reallzed as
local optimization. In the woest case, evaluation of the time-hound Tunetiong
takes expopential tlose In termes of the Input parameters, since 6 essentially
searches for the worst-¢ase execution path for all Inputs satlsfying the partially
known lnput stroeiures.

FPartial evaluation of Hme-bound funciions, In practlee, valwes of Input param-
chees are glven for almost all applieations. While in general It I8 not possible
to obtaln explicit loop bounds automatbcally and accurately, we can lmplieicly
achbpve the desived effect by evaluating the tie-bound unction symbollcally In
terms of prlmitive parameters glven specifle values of Input parameters.

The evaluation simply Iollows the steuctures of time-hound lunctbons. Specil-
fcally, the control steuctures determing conditlenal branches and make recueslbve
function calls a2 usual, and the only primitive opeeations are sums of primitlve
pacameters and maximums among alternative sums, which can easlly be done
symbollcally. Thus, the transformation simply Inlines all function calls, sums all
primitive parametors symbolleally, determines eonditlonal beanches I It ean, and
takes maximumn sums among all possible branches I it can not.

The symbalie evaluation £ deflned below performs the trapsformations. It
takes as argumeents an expresslon ¢ and an cnvieonment g of variable hindings
amd peturns as result a symbaolle value that contalns the primitlve parameters.
The evaluation starts with the application of the program to he analyveed 1o a
partially unknown input structure, oo, muergesord (el [200) ), and It stares with
an empty envionment. Assume symbddd =5 a lunction that symbolleally suwms
s arguments, and spoebMozx 18 a lunctlon that symbolically takes the maximwm
of I8 arguments,

variabde ref:  E[u]p =@l ook op binding in envirenment
primitive parameter: £ [ p =T
data constr.: £ [ole, ..., :.,.':I]J;:I = glE :j:;.‘.., E :jp]
rimitive op.: £ [plel, ... fa = W) p, ... E
:Puml:u.u.ti.m:? E agﬁfc;l...ll,.’_}] i = i{pﬂnﬁ & Etjm f: f::llf n] )
i ImEm: E mﬂ:r[n,...,enﬁ!-{u = ?n'nb.'t:l'n:r} ] E fea] p)
conditional: £ [if eythen ez elsoe]p = poi = frue
Fleslp  if Ef] e = false

hinding;: Elet v =erinezend]p= £ E§ ple—Efe] sl bind v in environment
function call: £ E1p g = gy — E =y ...:l.l.,.l—'-EE,.
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Thiz symbolic evaluation Is exactly a speclallzed partlal evaluation. It is [ully
automatle and computes the most accurate tme bound pessible with respect to
the glven program strecture. IL always terminates as long as the thme-hound
funetion terminates.

Awvriding repented summalions ocer recursione. The symbolic evaluation abaowe
i5 & global optimization ever all time-bound functlons Invelved. Dueing the eval-
uation, summathons of symbolle pelmitive parameters within each unctlhon del-
Inition are performed repeatedly while the computation recurses. Thus, we can
apesd wp the symbolle evaluatbon by fret performing such summatlons in a pre-
processing step. Specifically, we create a vector and let each element corpespoad
to a primitlve parameoter. The transformation & performs this optimization.

- i‘j1{t‘1|...:'l.l|-||:|=|:'!_l; _1fl[“l|'"|fl'l-'.} ='S|-‘=EI];
proRm .i‘}ml:.tﬁ.. e g ) = :':,; a '.!}m[:u, ey T, | = & [n:"mlg

primitive parameter: S [T] = ¢remte a vector of (Vs eocept with the
compament corresponding te 3 et to 1

smmatiomn: 8 [::d.:l![r Lqarms E.,.]] = pompment-wise summation of all the
vectors amaag & fe] .. Sefen)

MAXIEITIn: F- [mu::{nh..., nl':l] = COmpHMIEn-wise maximom af all the
vectars amang & 2], ... S fen)

all atbaer: & H =&

This Incrementalkzes the computatlon in esch recursion to avold repeated
summation. Agaln, this & fully automatic and takes tlme linear in terms of the
glze of the cost-hound function.

The result of this optimization & dramatic. For example, optlmbzed symbolle
coaliation of the same quadratic-time roverse takes only 2.50 milliseconds, while
direct evaluation takes 0,96 milllseconds, resuliing In less than 3 tlmes sbow-
clowin.

5 Making time-bound functions accurate

While loops and recursions affect tlme bounds most, the accuracy of the time
bounds caleulated alzo depends on the handling of the conditionals in the orlginal
program, which ls reflected In the tme-hound functlon. For conditionals awhose
test resulis are known to he true or false at the symboliceevaluation thmoe, the
appropriate hranch is chosen: so other branches, which may even take longer,
are not considered for the worst-case time. This i 8 major souree of ascuracy
for our worst-case bound.

For conditlonals whose test resulis are not koown at symbolle-evaluathon
thme, we need to take the maxiogm tme among all alternatives. The only case
in which this would produce Inaccurate time bound I8 when the test In a condl-
tbonal n one suboomputation implles the test In a conditlonal In ancther sulb-
computation. For example, consider an expression ep whose value s unknoom
and = = if &g then 1 else Fihonace [lﬂﬂﬂ}

ez = if e then Fibenacci 2000) else 2

II we compuie tlme bound for e + ez divectly, 1t 1s at least §Fiboreacs | L0 +
tFibomas= (HEE ). However, I we consbder only the two reallzable executlon
paths, we koow that the worst case 8 $Fibomaoc [ 2] plus some soall con-
stants. This ks known as the false-path elimination problem [1].



Two transformations, lifting condifions and sonplifying conditirnals, allow
us o achbeve the aocurate analysls resulis above. In each function definitbon,
the former lifts conditions to the cutmeost seope that the wet does not dopend
on, and the latter slmplifies conditionals according to the lved condition. These
transformatbons are not necded for the examples o this paper. They are discussed
further In [14).

6 Implementation and experimentation

We have Implemented the analysls approach in a prototype system, ALPA {Au-
tomatic Language-based Perlormance Analyeer). The Implementation ls for a
subset of Scheme, The measurements and analyses are perlormes] for souree pro-
grams compiled with Chee Scheme compiler [3]. The particular numbers below
are taken on @ Sun Ulira 1 with 1GTMHz UlieaSPARC CPU and GAMB main
memory, but we have also performed the analysks for several other kinds of
SPARC stations, and the resulis are slmilar.

W trled to avold compller optimizations by setiing the optimization level to
(h. To handle garbage-collection tinee, we performed two sets of experlments: one
set excludes garbage-collectlon times In both caleulations and measurements,
while the other Includes them in both.

Slpce the minlmum running tme of a program eonstroct 8 about 0.1 ml-
coseconds, and the preclsion of the tlmlng function s 10 milllseconds, we use
control/ test loops that ltecate L0 0LHD times, keeplng measurement error un-
der 1%. Such a loop 8 repeated 100 timees, and the average value 18 taken to
compute the primitive parameter for the tested construct (the varlance I8 less
than 1064 In most cases]. The caleulation of the time bound is done by plugglng
these measured parameters Into the optimbzed time-bownd function. We then run
each example program an appropriate nwmber of times {0 measure s runnlng
ilmme with less than 1% error.

Flguee 1 shows the caleulatoed and measuped worst-cage tlmes for slx example
programs on loputs of skee 10 to 2000k For the set unlon example, we ased
Inpuis whers hodh arguments weee of the glven skees, These tlmes do nod Include
garbage-collection tlmes. The Mem mefea 8 the measured time expressed as
a percentage of the caleulated tioee. In general, all measured tlmes are closely
bounded by the ealeulated times (with about 90-95% accuracy] exeept when
Inputs are exteemely small [100or 20, o 1 case) or cxtremely lavge (2000, In 3
cases), which is analyzed below.

For measurements that include garbage-collection thmes, the results are simi-
lar. exeopt that the poreentages ave conslstently higher and underestimates oecur
for & few more Inputs and start on Inputs of slee 1000 Instead of 2000 We he-
lpve that this s the effect of garbage collection, which we have not analyzed
apeifically.
~ Examples such as sorting are classifled as complex examples in previous study
19,13, where calculated time Is as much as 67 higher than measured time,
and where only the result lor one sorting program on a slogle lnput (of skee 10
19] or 20 [13]} Is reported in each experiment.

We found that when Inputs are exteemely small, the measueed time i3 oc-
caglonally above the calewlated time for some examples. Also, when Inputs are
large, the mezsured tmes {or some examples aee above the caleulated time. We
attelbute these to cache memory effects, and this s Tuether confirmed by mea-
suring programs, such as Carteslan product, that use extremely large amoeunt of
space even on small inputs (50-200]. While this shows that cache eflects need {o
be considered for larger applications, it alse helps valldate that our caleulated
resulis are accurate relative to our current model.
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Fig- L. Caleulabod sl measured wordb-cass i (8 millisecamla), without garbage collection,

Among Afteen programs we analyzed using ALPA, two of the time-hound
functions did not tereninate. COne s quicksort, and the other 1s & contrived varl-
athon of sortlng; hoth diverge because the recursive structuee for splitting a
list. depends on the values of unknown lst elements. We have found a different
symbolle-evaluatbon steategy that uses a kind of Incremental path seloctlon, and
the evaluation would terminate for hoth examples, as well as all other examples,
giving accurate worst-case bounds, We are Implementing that algorithm. We
also notleed that statle analysls can he explolied to ldentily sources of nontor-
m it lon.

7 Related work and conclusion

Compared to work In algorithm analysis and program complexity analysis [12,
23], this work consistently pushes through symbolle primitive parameters, so it
allows ws Lo caleulate actual tle bownds and validate the results with esxpeor-
Imental measurements. Compared to work In systems [23, 19, 18, 13], this work
cxplores program analysls and transformation technlgues to overcome the dif-
fieulties caused by the Inablility to obtain leop bounds, recursion depths, or
execution paths automatically and precizely. There I8 also work for measurlng
primitive parameters of Fortran progeams for the purpose of general performance
prediction [21], not worst-case analysls.

A number of technbgues have been studied for obiaining loop bounds o
execution paths [18,1,6,9). Manual annotations |18, 13] are Inconvenbent and
crror-prone (1], Automatie analyzis of such Information has two maln problems.
First, separating the loop and path information from the rest of the analysis [G] Is
in general less accurate than an integrated analysis [17]. Second, approximations
for merging paths from loops, or recueslons, very often lead to nontermingtlon
of the time analysis, not just looger bounds (6, 17). Some new methods, while
powerful, apply only to certaln classes of ]n‘ugl'mtleﬁ]. In eontrast, our method
allows recursions, or logps, o be consldered naturally In the overall execution-
thone analysis hased on partially known Input structures,

The most recent work by Lundgvist and Stensirom |17] s hased on essen-
tlally the same ideas as ours. They apply the eas at machine Instroctbon lewvel



amd can more accurately take Into account the effecis of Instruction plpelining
and data caching, but thelr method for merging paths for loops would lead to
nonterminating analysls for many programs, cg.. a peogram that computes the
union of two lists with mo repeated elements, Our experiments show that we can
caleulate more aceurate time bound and for many moee programs than merglng
paths, and the calculation k= gelll efficlent.

~ The klea of using partially known input structunes originates from Rosendahl
20]. We have cxtended [L 10 manipulate pelmliive parameters. We also handle
binding constructs, which is slmple but necessary for efficlent computation. An
Innovation In our method 8 to optimize the time-bound function using par-
thal evaluation (2, 10], Incremental computation [16,15), and transformations of
conditionals to mako the analysls more efficlent and more accurate.

We arc starting to explore a sulte of new language-basaed technlgues for tim-
ing analysls, In particular, analyses and opilnkzations for further speeding up the
cwaluation of the tlme-bound function. To make the analysls even more accurate
and efficient, we can automatically generate measurement peogeams for all maxl-
mum subexpressions that do oot include translers of eonteol; this cormesponds to
the large atomic-blocks method [19). We alse believe that the lower-bound anal-
yels Is entirely symmetrle 1o the upper-bound analysis, by replacing mazimwm
with minimum at all eonditional points. Flnally, we plan to acoommodate mope
lower-level dynamile factors for timing at the source-language level [13,7]. In
particular, we plan to apply our general appeoach to analyze space consumptlon
amd hence to help predict garbage-collectbon and caching behaylor.
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