Automatic Time-Bound Analysis for a Higher-Order
Language *

Gustavo Gomez
Computer Science Department
215 Lindley Hall
Indiana University
Bloomington, IN 47405
Phone: (812)855-9761
Fax: (812)855-4829

ggomezes@cs.indiana.edu

ABSTRACT

Analysis of program running time is important for several
applications, including reactive systems, interactive envi-
ronments, compiler optimizations and performance evalu-
ation. Automatic and efficient prediction of accurate time
bounds is particularly important, and being able to do so
for high-level languages is particularly desirable. This pa-
per presents a general approach for automatic and accurate
time-bound analysis for a functional high-level language,
that combines methods and techniques studied in theory,
languages, and systems. The approach consists of transfor-
mations for building time-bound functions in the presence of
partially known input structures, symbolic evaluation of the
time-bound function based on input parameters, optimiza-
tions to make the analysis efficient as well as accurate, and
measurements of primitive parameters, all at the source-
language level. To handle higher-order functions, special
transformations are needed to build lambda expressions for
computing running times, to optimize the construction of
the time lambda expressions, and to optimize the symbolic
evaluation. It took us several tries to obtain the simple
and concise transformations for handling lambda expres-
sions. We describe analysis and transformation algorithms
and explain how they work. We have implemented this ap-
proach and performed a large number of experiments an-
alyzing Scheme programs. The measured worst-case times
are closely bounded by the calculated bounds. We describe
our prototype system, ALPA, as well as the analysis and
measurement results.

*This work is supported in part by ONR under grant
N00014-99-1-0132 and NSF under grant CCR-9711253.

Yanhong A. Liu
Computer Science Department
215 Lindley Hall
Indiana University
Bloomington, IN 47405
Phone: (812)855-4373
Fax: (812)855-4829

liu@cs.indiana.edu

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
automatic analysis of algorithms, program transformation;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; D.1.1 [Programming Techniques]: Functional Pro-
gramming

General Terms

Measurement, Performance

1. INTRODUCTION

Analysis of program running time is important for reac-
tive systems, interactive environments, compiler optimiza-
tions, performance evaluation, and many other computer
applications. It has been extensively studied in many fields
of computer science: algorithms [22, |13} |14} |41], program-
ming languages [39} 23 |32} |36, |35], and systems |37} |30}
34}, [33]. Being able to predict accurate time bounds auto-
matically and efficiently is particularly important for many
applications, such as reactive systems. It is also particularly
desirable to be able to do so for high-level languages |37} 130].

Since Shaw proposed timing schema for analyzing system
running time based on high-level languages [37|, a number
of people have extended it for analysis in the presence of
compiler optimizations [30} |10|, pipelining [17, [24], cache
memory [3} 24} [12], etc. However, there is still a serious
limitation of the timing schema, even in the absence of low-
level complications. This is the inability to provide loop
bounds, recursion depths, or execution paths automatically
and accurately for the analysis |29, [2]. For example, the in-
accurate loop bounds cause the calculated worst-case time
to be as much as 67% higher than the measured worst-case
time in |30, while the manual way of providing such in-
formation is potentially an even larger source of error, in
addition to being inconvenient [29]. Various program anal-
ysis methods have been proposed to provide loop bounds or

Permission to make digital or hard copies of all or part of this work for execution paths [2, |11} 16, |18]. However, they apply only to
personal or classroom use is granted without fee provided that copies aresome classes of programs or use approximations that are too
not made or distributed for profit or commercial advantage and that copies crude for the analysis. Also, separating the loop and path
bear this notice and the full citation on the first page. To copy otherwise, t0 jnformation from the rest of the analysis is in general less

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
PEPM '02,Jan. 14-15, 2002 Portland, OR, USA
Copyright 2002 ACM 1-58113-455-X/02/0001$5.00.

accurate than an integrated analysis [28].
Liu and Gémez [25] studied a general approach for au-
tomatic and accurate time-bound analysis that combines

methods and techniques studied in theory, languages, and
systems. They call it a language-based approach since it
primarily exploits methods and techniques for static pro-
gram analysis and transformation. However, the particular
analysis there handles only first-order functions. Being able
to handle higher-order functions is important for analyz-
ing most functional languages and for analyzing methods in
object-oriented languages with inheritance.

This paper extends the language-based approach to a higher-

order language. As before [25]|, the approach consists of
transformations for building time-bound functions in the
presence of partially known input structures, symbolic eval-
uation of the time-bound function based on input param-
eters, optimizations to make the analysis efficient as well
as accurate, and measurements of primitive parameters, all
at the source-language level. To handle higher-order func-
tions, special transformations are needed to build lambda
expressions for computing running times, to optimize the
construction of the time lambda expressions, and to op-
timize the symbolic evaluation. We describe analysis and
transformation algorithms and explain how they work. We
have implemented this approach and performed a large num-
ber of experiments analyzing Scheme programs. The mea-
sured worst-case times are closely bounded by the calculated
bounds. We describe our prototype system, ALPA as well
as the analysis and measurement results. This paper does
not address the problem of how to assess the cost of garbage
collection.

2. LANGUAGE-BASED APPROACH

Language-based time-bound analysis starts with a given
program written in a high-level language, such as Java, ML,
or Scheme. The first step is to build a time function that
(takes the same input as the original program but) returns
the running time in place of (or in addition to) the original
return value. This is done by associating a parameter with
each program construct representing its running time and
by summing these parameters based on the semantics of the
constructs |39, |6, [37]. This transformation is straightfor-
ward for all constructs except lambda abstraction, i.e., first-
class function, where additional transformations are needed
to build lambda expressions for computing running times,
as proposed by Sands [36l [35]. We call parameters that
describe the running times of program constructs primitive
parameters. To calculate actual time bounds based on the
time function, three difficult problems must be solved.

First, since the goal is to calculate running time with-
out being given particular inputs, the calculation must be
based on certain assumptions about inputs. Thus, the first
problem is to characterize the input data and reflect them
in the time function. In general, due to imperfect knowl-
edge about the input, the time function is transformed into
a time-bound function.

In algorithm analysis, inputs are characterized by their
size; accommodating this requires manual or semi-automatic
transformation of the time function |39, 23, |41]. The analy-
sis is mainly asymptotic, and primitive parameters are con-
sidered independent of the input size, i.e., are constants
while the computation iterates or recurses. Whatever values
of the primitive parameters are assumed, a second problem
arises, and it is theoretically challenging: optimizing the
time-bound function to a closed form in terms of the in-
put size [39, |6, 23, |32} |14]. Although much progress has

76

been made in this area, closed forms are known only for
subclasses of functions. Thus, such optimization can not be
automatically done for analyzing general programs.

In systems, inputs are characterized indirectly using loop
bounds or execution paths in programs, and such informa-
tion must in general be provided by the user |37 30} 29} 24],
even though program analyses can help in some cases |2}
11} |16, |18]. Closed forms in terms of parameters for these
bounds can be obtained easily from the time function. This
isolates the third problem, which is most interesting to sys-
tems research: obtaining values of primitive parameters for
various compilers, run-time systems, operating systems, and
machine hardwares. In recent years, much progress has been
made in analyzing low-level dynamic factors, such as clock
interrupt, memory refresh, cache usage, instruction schedul-
ing, and parallel architectures [30, (3} 24, [12|. Nevertheless,
the inability to compute loop bounds or execution paths au-
tomatically and accurately has led calculated bounds to be
much higher than measured worst-case time.

In programming-language area, Rosendahl proposed using
partially known input structures |32]. For example, instead
of replacing an input list [with its length n, as done in al-
gorithm analysis, or annotating loops with numbers related
to n, as done in systems, we use as input a list of n un-
known elements. We call parameters for describing partially
known input structures input parameters. The time function
is then transformed automatically into a time-bound func-
tion: at control points where decisions depend on unknown
values, the maximum time of all possible branches is com-
puted; otherwise, the time of the chosen branch is computed.
Rosendahl concentrated on proving the correctness of this
transformation. He assumed constant 1 for primitive param-
eters and relied on optimizations to obtain closed forms in
terms of input parameters, but again closed forms can not be
obtained for all time-bound functions. Also, Rosendahl han-
dles only first-order functions. Sands studied time functions
for higher-order functions [36} 35|, but he did not address
any of the three problems described above. In addition, his
analysis is presented only for named functions, not general
lambda abstractions.

Combining results from theory to systems, and explor-
ing methods and techniques for static program analysis and
transformation, we have developed a general approach for
computing time bounds automatically, efficiently, and more
accurately. The approach has four main components.

First, we use an automatic transformation to construct
a time-bound function from the original program based on
partially known input structures. The resulting function
takes input parameters and primitive parameters as argu-
ments. The only caveat here is that the time-bound function
may not terminate. However, nontermination occurs only if
the recursive/iterative structure of the original program de-
pends on unknown parts in the given partially known input
structures.

Then, to compute worst-case time bounds efficiently with-
out relying on closed forms, we optimize the time-bound
function symbolically with respect to given values of input
parameters. This is based on partial evaluation and incre-
mental computation. This symbolic evaluation always ter-
minates provided that the time-bound function terminates.
The resulting function can be used repeatedly to compute
time bounds efficiently for different primitive parameters
measured for different underlying systems.

A third component consists of transformations that enable
more accurate time bounds to be computed: lifting con-
ditions, simplifying conditionals, and inlining non-recursive
functions. These transformations should be applied on the
original program before the time-bound function is construc-
ted. They may result in larger code size, but they allow
subcomputations based on the same control conditions to
be merged, leading to more accurate time bounds, which
can be computed more efficiently as well.

Finally, we measure primitive parameters at the source-
language level and use the best conservative estimations in
computing the time bound. We have implemented these
transformations and the measurement procedures for a higher-
order functional subset of Scheme. All the transformations
and measurements are done automatically, and the time
bound is computed efficiently and accurately. Examples
analyzed include various list processing and numerical pro-
grams.

The approach is general because all four components we
developed are based on general methods and techniques.
Each particular component requires relative small improve-
ments or modifications to existing analyses or transforma-
tions, but the combination of them for the application of
automatic and accurate time-bound analysis for high-level
languages is powerful. We used a higher-order functional
subset of Scheme |1} [8].

All our analyses and transformations are performed at
source level. This allows implementations to be independent
of compilers and underlying systems. It also allows analysis
results to be understood at source level. Our analysis scales
well with program size, as the transformations take linear
time in terms of program size, but depending on program
structures, the analysis might not scale well with input size
used in partially known input structures.

Language.We use a high-order, call-by-value functional

language that has structured data, primitive arithmetic, bool-
ean, and comparison operations, conditionals, bindings, first-

class functions, and mutually recursive function calls. A pro-

gram is a set of mutually recursive definitions. Its syntax is

given by the grammar below:

A A

program 1= VU1 = €1,...,Unp = €n

e n=v variable reference
c(el, ey en) data construction
p(el, ey en) primitive operation

\

\

| if e; then e; else e3 conditional expression
| letv=e; ine; binding expression

| letrec v=-¢; in e recursive binding exp
‘ lambda (v1,...,v,) eo first-class function

| eo(er,...,en) function application

Constants are constructors of arity 0; for convenience, we
write ¢ instead of ¢() for them. We use constructor nil to
denote an empty list, with operator null? as the correspond-
ing tester, and we use constructor cons to build a list from
a head element and a tail list, with operators car and cdr as
the corresponding selectors. For binary operations, we chose
between infix and prefix notations depending on whichever
is easier for the presentation. For simplicity of the presen-
tation, we restrict the discussion to single-variable bindings,
but the implementation handles multiple-variable bindings.
For ease of analysis and transformation, we assume that a
preprocessor gives a distinct name to each bound variable.

Figure gives an example program with definitions index
and index-cps. Function index takes an item and a list and
returns the zero-based index of the item in the list, or —1 if
the item is not in the list. It calls function index-cps, which
uses continuation-passing style (CPS) to avoid unnecessary
additions if the item is not in the list. We use this program
as a small running example. To present various analysis
results, we also use several other examples as described in
Section [Bl

index £
lambda (item, ls) index-cps(item, ls, lambda (z) x),
index-cps L
lambda (item, ls, k)
if null?(ls) then —1
else if item = car(ls) then k(0)
else index-cps(item, cdr(ls), lambda (v) k(v + 1))
Figure 1: Example program with definitions index
and index-cps.

Even though this language is small, it is sufficiently power-
ful and convenient for writing sophisticated programs. Struc-
tured data is essentially records in Pascal, structs in C, and
constructor applications in ML. Conditionals and bindings
easily simulate conditional statements and assignments, and
recursions subsume loops.

The absence of arrays and pointers in the language does
not detract the generality of the method, since time anal-
ysis with them is not fundamentally harder. The running
times of the program constructs for them can be analyzed
in the same way as times of other constructs. For example,
accessing an array element afi] takes the time of accessing
i, offsetting the element address from that of a, and finally
getting the value from that address. Note that side effects
caused by these features often cause other analyses to be
more difficult.

For pure functional languages, lazy evaluation is impor-
tant. Time functions that accommodate it have been stud-
ied. The optimizations we describe apply to it as well. Time-
bound functions and symbolic evaluation need to be studied
to handle laziness.

3. CONSTRUCTING TIME-BOUND FUNC-
TION

Constructing Time FunctionSie first transform the orig-
inal program to construct a time function, which takes the
original input and primitive parameters as arguments and
returns the running time. This can be done based on the
semantics of each program construct. It is straightforward
for all constructs except first-class functions, i.e., lambda ex-
pressions. Partially known input structures may be given by
a user or constructed automatically for typical input struc-
tures parameterized by information such as the length of a
list or the height of a complete binary tree.

For example, a variable reference is transformed into a
symbol Ty, representing the running time of a variable ref-
erence; a conditional statement is transformed into the time
of the test plus, if the condition is true, the time of the true
branch, otherwise, the time of the false branch, and plus the
time for the transfers of control. We introduce a new prefix
operator add to add two or more time expressions.

To handle lambda expressions, it is necessary to introduce

new lambda expressions for computing the running times. A
lambda expression evaluates to a closure, where the body of
the lambda is evaluated only when the function represented
by the closure is actually applied. Thus, the time for evalu-
ating the body of a lambda can also only be computed when
the function is actually applied and, therefore, we need to
build a new lambda expression for computing the running
time. The body of the time lambda expression will be based
on the body of the original lambda expression, and the time
lambda expression will be evaluated to a time closure. We
introduce a special data constructor lambda-pair to build a
pair of an original lambda expression and its time lambda
expression, and we use value and time as the corresponding
selectors.

The time transformation 7 embodies the overall algo-
rithm and is given in Figure It takes an original pro-
gram, builds lambda pairs for lambda expressions in each
definition e; using transformation 7., where subscript v is
mnemonic for value, and builds the time component of each
lambda pair based on the value component of the pair using
transformation 7;, where subscript ¢ is mnemonic for time.
To avoid clutter, we reuse identifiers v1, ..., v, in the trans-
formed program; this does not cause any problem since the
old meanings of theses identifiers are not used in the trans-
formed program.

Rules v1 to ve handle expressions other than lambda ex-
pressions or function calls, so they transform subexpressions
recursively. Rule v takes a lambda expression and creates
a lambda pair; the first component is the body transformed
recursively by 7,, and the second component is the time
body transformed further by 7;. To make the transforma-
tion run in linear time, the resulting expression of 7 [eg]
is shared. Rule vg takes an application of function eg and
transforms subexpressions recursively; since 7, [eg] evaluates
to a lambda pair, its value component is selected and applied
to the transformed arguments.

Rule t; transforms a variable reference to the time of a
variable reference Tyqor. Rule to (respectively t3) sums the
times of evaluating the arguments and the time of the primi-
tive (respectively constructor). Rule ¢4 sums the times of the
conditional transfer, of evaluating the condition, and of eval-
uating the true branch, if the condition is true; otherwise,
it sums the times of the conditional transfer, of evaluating
the condition, and of evaluating the false branch. Rules t5
and t¢ include the bindings unchanged, because the trans-
form body may refer to the bound variable; they sum the
times of making a binding, of evaluating the expression for
the bound variable, and of evaluating the body. Rule t7 just
returns the time of evaluating a lambda abstraction; there
is no need to go into the body of the lambda, because this
time does not depend on the body. Rule tg sums the times of
making a function call, of evaluating ep and all its argument
expressions, and of evaluating the function; the function is
given by the time component of the lambda pair.

Transformation 7 as described above runs in linear time
in terms of the size of the given program. Intuitively, each
subexpression is transformed at most twice: once by 7, and
once by 7;. A formal proof is done by an induction on the
number of subexpressions in the program, and the number
of nestings of first-class functions.

Figure [3] shows the result of this transformation applied
to function indez-cps. Shared code is presented with where
clauses when this makes the code smaller. For ease of pre-

78

sentation, we give all constants the same symbol T} for their
times.

index-cps S
lambda-pair
(lambda (item, ls, k)
if null?(ls) then —1
else if item = car(ls) then value(k)(0)
else value(indez-cps)(item, cdr(ls), lambday),
lambda (item, ls, k)
if null?(ls) then add(T;y, add(Thuiiz, Tvar), Tk)
else add(Tifv ”‘dd(Tnull77 T’UQT)7
if item = car(ls)
then add(T;¢, add(T=, Tyar, add(Tear, Tvar)),
add(TEa”, tz’me(k)(O), Toar, Tk))
else add(T;y, add(T=, Tyar, add(Tear Tvar)),
add(Tculla Tva7‘7 Twarv
time(index-cps)(item, cdr(ls),
lambday),

Tiambdas add(Tear, Tvar)))))
where lambda; is

lambda-pair(lambda (v) value(k)(v + 1),
lambda (v) add(Tcqu, time(k)(v + 1), Tyar,
add(Ty, Tk, Tvar)))
Figure 3: Function index-cps after transformation

7.

This transformation is similar to the local cost assign-
ment [39], step-counting function [32], cost function [36], etc.
in other work. Our transformation extends those methods
with bindings and general first-class functions. It also makes
all primitive parameters explicit at the source-language level.
For example, each primitive operation p is given a different
symbol T},, and each constructor c is given a different sym-
bol T.. Note that the time function terminates with the
appropriate sum of primitive parameters if the original pro-
gram terminates, and it runs forever to sum to infinity if
the original program does not terminate, which is the de-
sired meaning of a time function.

Constructing Time-Bound FunctionSharacterizing pro-
gram inputs in the time function is difficult to automate [39,

23| 137]. However, partially known input structures provide

a natural means [32]. A special constant unknown is used

to represent unknown values. For example, to represent all

input lists of length n, the following partially known input

structure can be used.

list 2 lambda (n)
if n = 0 then nil
else cons(unknown, list(n — 1))

Similar structures can be used to describe an array of n
elements, a matrix of m-by-n elements, etc.

Since partially known input structures give incomplete
knowledge about inputs, the original functions need to be
transformed to handle the special value unknown. In par-
ticular, for each primitive function p, we define a new prim-
itive function f, such that f,(v1,...,vs) returns unknown if
any v; is unknown and returns p(vi,...,vn) as usual other-
wise. We also define a new least upper bound function lub
that takes two values and returns the most precise partially

v = e, v1 = T, led],
T ey = ..,
Un 2 en vn 2 Ty [en)
vy : Ty] =
U2 ZZ;[C(€1,...76”)] = C(ZJ [61]7"'37:1[671])
vs : Ty [pler, ..., en)] = p(Ty e, .-, 7o len])
vy : T, [if e1 then e else e3] = if 7, [e1] then T, [eq] else T, [es]
vs : Ty [let v =e1 in eg] =let v ="T,[e1] in T, [eo]
vg : T, [letrec v = e; in ey] = letrec v = T, [e1] in T, [e2]
v7 : T, [lambda (v1,...,v,) eo] = lambda-pair(lambda (v1, ...,v,) Ty [eo],
lambda (vi, ..., vn) 73 [To [eo]])
vs : Ty [eo(e, ..y en)] = value(7, [eo]) (7o [e1], -, Zo [en)])
t1 :7:5 [’U] = Tva'r
to : Tefc(en, ..., en)] = add(T.,Ti[e1], ..., Tt [en])
ts : T [p(e1, ..y en)] = add(Tp, Ty le1] , ---, Tt [en)])
ta : T, [if e1 then es else es] = if e; then add(T;s,7: [e1] , Tt [e2])
else add(T;y, Tt [e1] , Tz [es])
ts : Ty [let v = e; in e) = let v =e; in add(Tiee, Tt [e1], Tt [e2])
te : Ty [letrec v =e; in es] = letrec v = e in add(Tietrec, Tt [e1] , 7t [e2])
t7 : Ty [lambda-pair(e1, e2)] = Tiambda
ts : Ty [value(eo) (ex, ..., en)] = add(Teau, Tt [eo] , Tt [e1] , -, Tt [en]
time(eo) (€1, ...,€n))

Figure 2: Rules for time transformation 7.

known structure that both values conform with.

Ir lub 2 lambda (v1,v2)

if v1 s c1(x1, .., 25) A
v2 18 c2(Y1, .., Y5) A
cpr=co N 1 =3

then cq (lub(z1,y1),

lambda (v1, ..., v5)
if v1 = unknown
V..V
v = unknown
then unknown
else p(v1, ..., vp)

lub(zi, yi))
else unknown

Also, the time functions need to be transformed to compute
an upper bound of the running time. If the truth value of a
conditional test is known, then the time of the chosen branch
is computed, otherwise, the maximum of the times of both
branches is computed.

Because functions are first-class objects, their values can
also be unknown. If we try to apply an unknown function,
the result is unknown, and the time is infinite, as shown
below by definitions value_apply and time_apply. We could
keep more precise information than unknown. This can be
a set of possible function values. Then the upper bound of
the times of applying all functions in the set can be taken.
This is easy to implement, but it may be expensive to com-
pute if it is indeed needed. An important fact is that in all
examples mentioned in this paper, this is not needed, i.e.,
the naturally given partially known input contains enough
information to decide all lambdas at analysis time.

time_apply £
lambda (vo,v1, ..., vn)
if vo = unknown
then infinite
else time(vo) (vi,...,vn)

value_apply =
lambda (vo, v1, ..., Un)
if vo = unknown
then unknown
else value(vo) (v1, ..., vn)

The time-bound transformation T, given in Figure [4] em-

79

bodies the overall algorithm. It takes a program obtained
from time transformation 7 and builds the corresponding
time-bound version. It uses two transformations: 7., and
Tiv. T transforms an expression that computes the original
value, and 7y, transforms an expression that computes the
running time. Again, identifiers vy, ..., v, are reused in the
transformed program.

Rule vb; leaves variables unchanged, as they do not change
with the introduction of the value unknown. Rule vbs trans-
forms arguments of a constructor recursively. Rule vbs trans-
forms the arguments recursively and replaces the primitive
operator p by the new operator f, that returns unknown if
any of the arguments evaluates to unknown. Rule vb4 trans-
forms subexpressions recursively, builds an expression that
binds the value of the transformed e; to a distinct variable
v, and if the value of v is unknown returns the least upper
bound of the values of the two transformed branches, oth-
erwise returns the value of the appropriate branch based on
the value of v. Rules vbs and vbs do not directly use the
value unknown, so they simply transform subexpressions re-
cursively. Rule vby uses 7,5 to transform the value compo-
nent of the lambda pair and uses 7y, to transform the time
component. Rule vbs uses function value_apply to apply the
transformed function to the transformed arguments.

Rule tbs transforms subexpressions recursively. Rule tbs
is similar to rule vb4, except that it computes the maxi-
mum time instead of the least upper bound when the value
of the condition is unknown. Rules tbs and tbs use 7y to
transform the binding expression, and recursively use 7y
to transform the body. Rule tbs uses time_apply to handle
unknown functions; it uses 7, to transform the argument
expressions because the time lambda expression takes values
as arguments.

Applying transformation 7, to function indez-cps in Fig-

[I>

,’l)n) 62)]

V1 €1,
Ty s

Un 2 en
l)b1 : Z}b [’U]
vbe 1 Typlc(er, ..., en)]
vbs : Ty [p(er, ..., en)]
vba i Ty [if e1 then es else eg)
vbs : Ty [let v = e in eg]
vbs : Ty [letrec v = e in eg]
vbr : Typ[lambda-pair(lambda (v1,...,v,) €1,

lambda (v1, ...

vbs : Ty [value(eo) (e, ..., en)]
thy : T [T]
thy : Ty [add(eq, ..., en)]
tbs : Ty [if e1 then e; else ej]
thy : T [let v =e; in e
ths : Ty [letrec v = e; in eg)
the : Tup [time(eo) (e, ..., en)]

V1 = vb [61] ’

weey

Un £ Tov [en]

=
c(Tup[ea] s -, Top [en])
fp(lTvb [61] y ey Tob [en])
= let v = Ty [ed]
in if v = unknown
then lub(Ty [e2], Tob [e3])
else if v then T, [e2] else 7T, [es]
=let v = 'Z;,b [61] in ’Tvb [62]
= letrec v = T [e1] in T [e2]
= lambda-pair(lambda (vi,...,vn) Tus [e1],
lambda (v1, ..., vn) Tip [e2])
= value-apply(Tus [eo] , To [ea] , -, Tow [en])

=T
add(’]’tb [61] g orey 7;1, [en])
= let v = Ty [e1]
in if v = unknown
then max (T [e2] , Tis [e3])
else if v then Ty, [e2] else 7y [es]
=let v = Z;b [61] in 'Ttb [62]
= letrec v = T [e1] in Tz [e2]
= time-apply(Tus [eo] , Tus [e1] , -, Ton [en])

Figure 4: Rules for time-bound transformation 7.

ure [3| yields function indezx-cps in Figure Again, shared
code is presented with where clauses.

The transformed time-bound function is guaranteed to
terminate, provided the original program terminates. In
practice, we impose an upper bound on the analysis time,
and, if the analysis does not terminate within this time, we
report this together with the time-bound calculated till this
time

4. OPTIMIZING TIME-BOUND FUNCTION

Time-bound functions may be extremely inefficient to eval-
uate given values for their parameters. In fact, even when
it terminates, in the worst case, the evaluation takes ex-
ponential time in terms of the input parameters, since it
essentially searches for the worst-case execution path for all
inputs satisfying the partially known input structures.

This section describes symbolic evaluation and optimiza-
tions that make the computation of time bounds drastically
more efficient so that it is feasible to compute them quickly
for input sizes in the thousands. The transformations con-
sist of partial evaluation, realized as global inlining, and
incremental computation, realized as local optimization.

Partial Evaluation of Time-Bound Functions prac-
tice, values of input parameters are given for almost all
applications. This is why time-analysis techniques used in
systems can require loop bounds from the user before time
bounds are computed. While in general it is not possible to
obtain explicit loop bounds automatically and accurately,
we can implicitly achieve the desired effect by evaluating
the time-bound function symbolically in terms of primitive
parameters given specific values of input parameters.

80

The evaluation simply follows the structures of time-bound
functions. Specifically, the control structures determine con-
ditional branches and make recursive function calls as usual.
The only primitive operations are sums of primitive param-
eters and maximums among alternative sums, which can
easily be done symbolically. Thus, the transformation sim-
ply inlines all function calls, sums all primitive parameters
symbolically, determines conditional branches if it can, and
takes maximum sums among all possible branches if it can
not.

The symbolic evaluation £ defined below performs the
transformations. It takes as arguments an expression e and
an environment p of variable bindings and returns as re-
sult a symbolic value that contains the primitive parame-
ters. The evaluation starts with the application of the pro-
gram to be analyzed to a partially known input structure,
e.g., index(unknown, list(100)), and it starts with an empty
environment. Assume adds is a function that symbolically
sums its arguments, i.e., it sums the counts respectively for
primitive parameters, and mazxs is a function that symboli-
cally takes the maximum of its arguments.

index-cps £ lambda-pair(lambda (item, s, k)
let v, = fnull?(ls)
in if v1 = unknown then lub(—1, exp1)
else if v; then —1 else expq,
lambda (item, Is, k)
let va = fnuuz(ls)
in if vo = unknown then
mazx(timey, times)
else if vy then time; else times)
where exp; is let vg = item f= fear(ls)
in if v = unknown then lub(value_apply(k, 0), exp2)
else if vz then time_apply(k, 0) else exps
where exps is value_apply(index-cps, item, fcqr(ls), lambda;)
time; is add(Tif, add(Tnu”?, Tua.,v)7 Tk)
timey is add(T;f, add(Thun?, Tvar),
let vy = item f= fear(ls)
in if v4 = unknown then maz(times, timeys)
else if vy then times else timey)
where times is add(T;¢, add(T=, Tyar, add(Tear, Tvar))
add(Tequ, time_apply(k, 0), Tyar, Tk))
timey is add(Tys, add(T=, Tyar, add(Tear, Tvar))
add(Teq11, time_apply (index-cps, item, fear(ls), lambday),
Tyar, Tvar, add(Tcdry Tvar); Tlambda))
where lambda; is lambda-pair(lambda (v) value_apply(k, v fy 1),
lambda (v) add(T¢qu, time_apply(k, v f4 1),
Tvar, add(T+, Tk, Tvarr)))

Figure 5: Function indezx-cps after time-bound transformation 7.

ser: Ev]p =p(v)

sex: EMT]p =T

sez : Elc(er,....,en)]p =c(&ei] p, ---, Elen] p)
sea: Efples, el —p(Eer] s & len])

ses : Eladd(eq, ..., en)] p =adds(E[ed] p, -, € [en] p)

ses : £[maz(er,...,en)]p =maxs(€ [ei] p, ..., € [en] p)

ser : E]if e1 then e; else es]p =E[e2]p if € [e1] p = true
Eleslp if Elei] p = false

ses: Eflet v=-e1 in ez |p =& [e2] plv— & [ei] o]

seg: Efletrec v =-e1 in ez |p =E|[e2] plv— & [e1] p]

se1o :€[lambda (v1, ..., vn) eo] p=(lambda(v1, ..., vn) €o, p)

se11 :Eleo(er, ..., en)]p =Ee0) p'[v1 — Eled] p, -y

on = € [en] p]

where (lambda(vi, ...
=Eleo] p

As an example, applying symbolic evaluation to the time-
bound function for index on an unknown item and a list of
size 100, we obtain the following result:

€ [index(unknown, list(100))]0 =

101 % Tj, + 802 * Tyar + 201 + Tj
+ 201 = Tcall + 101 = ﬂambda + 100 * Tca'r
4+ 100 * Tegr + 101 % Thpyz + 99 « T4 + 100 « T=

Avoiding Repeated Summations Over Recursians.
symbolic evaluation above is a global optimization over all
time-bound functions involved. During the evaluation, sum-
mations of symbolic primitive parameters within each func-
tion definition are performed repeatedly while the computa-
tion recurses. Thus, we can speed up the symbolic evalua-
tion by first performing such summations in a preprocessing
step. Specifically, we create a vector and let each element
correspond to a primitive parameter. The transformation
S performs this optimization. We introduce two new func-
tions: adds, performs symbolic addition by component-wise
summation of the argument vectors, and maxs, computes

81

71}”)6{)7 p/>

the component-wise maximum of the argument vectors.

v £ e, v1 £ Siled],
program: S ||..., = ..,
Un 2 en vn 2 Silen]
create a vector of 0’s
primitive except with the com-
ST = ondi
parameter: ponent corresponding
to T set to 1
summation: S [add(e, ..., en)] = addsy (St [ei], ..., St[en])
maximum: S [maz(eq, ..., en)] =mazs, (St [e1] , ..., St [en])
all other: S;|e] =e

Applying this optimization to the time-bound version of
function indez-cps in Figure [f] yields the definition in Fig-
ure

This incrementalizes the computation in each recursive
step to avoid repeated summation. As other transformations
we have described, this is fully automatic and takes linear
time, here in terms of the size of the time-bound function.

The result of this optimization is dramatic. For example,
optimized symbolic evaluation of the same curried Acker-
mann with input (3,7) takes only 1.68 seconds while unop-
timized symbolic evaluation takes 127 seconds.

On small inputs, symbolic evaluation takes relatively much
more time than direct evaluation, due to the relatively large
overhead of vector setup; as inputs get larger, symbolic eval-
uation is almost as fast as direct evaluation for most exam-
ples. After the symbolic evaluation, time bounds can be
computed in virtually no time given primitive parameters
measured on any machine. Note that profiling will not pro-
duce a time bound for all inputs described by the partially
known input structures; if enumeration is used, then it will
not be faster than our analysis, which is essentially doing a
smart form of enumeration.

Time-bound functions can further be made more accurate
by lifting conditions, simplifying conditionals, and inlining
non-recursive functions, as done previously in [25].

index-cps
£ lambda-pair(lambda (item, s, k)
let v1 = fouuz(ls) in
if v1i = unknown then lub(—1, exp1)
else if v; then —1 else expq,
lambda (item, ls, k)
let vo = fnu”?(ls) n
if v2 = unknown then max, ({0 0
else if vy then (0001000000
where exp; is let vs = item f= fear(ls) in

0
0

100
111

0
0

0
0

0111000 0), time;)

0
0 0) else time;)

0
0

if v3 = unknown then lub(value_apply(k, 0), value(index-cps)(item, feqr(ls), lambday))
else if vz then value_apply(k, 0) else value_apply(index-cps, item, fcar(ls), lambda)

time; is let vy = item f= fear(ls) in
if v4 = unknown then

mazsy,(adds,((1 001

add., ({1101

100000014
100000006
else if v4 then adds, ({1 001100000

0), time(k)(0)),
0), time(index-cps)(item, feqr(ls), lambday)))
00 10), time(k)(0))

else adds,((110110000000620010), time(index-cps)(item, fear(ls), lambday))
where lambday is lambda-pair(lambda (v) value_apply(k, v fi 1),
lambda (v) adds,((000001000001200010), time(k)(v f+ 1)))

Figure 6: Function index-cps after optimization for avoiding repeated summations, where the tuples are for
<Tca7‘; Tcdr, Tcons, Tnull?, TEq?, T+7 T, 5 T*7 T> 5 T<7 T:, Tconst, Tva'rref, Tif, Crlet, ﬂetrec, Tfuncall, Tclosure> .

5. IMPLEMENTATION AND EXPERIMEN-

TATION

We have implemented the analysis approach in a pro-
totype system, ALPA (Automatic Language-based Perfor-
mance Analyzer). We performed a large number of mea-
surements and obtained encouraging good results.

The implementation is for a subset of Scheme. The proto-
type is implemented using Chez Scheme v6.0a compiler [9].
The input is a program as defined in Section but with
Scheme syntax. The output is an optimized time-bound
function that takes an input size and returns the symbolic
time bound of the program for inputs of that size. The im-
plementations consists of 500 lines of scheme code, nearly
twice the

The computer used to take the measurements is a Sun
Enterprise 450 Model 4400 with four 400MHz cpu’s, 1 GB
of RAM, and 4.6 GB virtual memory.

Since the minimum running time of a program construct
is about 0.1 microseconds, and the precision of the time
function is 10 milliseconds, we use control/test loops that
iterate 10,000,000 times, keeping measurement error under
0.001 microseconds, i.e., 1%. Such a loop is repeated 100
times, and the average value is taken to compute the primi-
tive parameter for the tested construct (the variance is less
than 10% in most cases). The calculation of the time bound
is done by plugging these measured parameters into the op-
timized time-bound function. We then run each example
program an appropriate number of times to measure its run-
ning time with less than 1% error.

All the measurements were done by starting a new Scheme
process, loading the needed definitions, measuring the time
of interest, and exiting Scheme. This ensures that only the
time related to the given program is counted.

The example programs shown here are: ack: Ackermann
function programmed using the standard first-order recur-
sive definition; ack-curried: a curried version of Ackermann
function that uses higher-order functions (and is almost twice
as fast as the standard first-order function); tak-cps: the
Takeuchi function in CPS, part of the Gabriel benchmark
suite |15]; reverse: standard first-order list reverse function;
rev-cps: a CPS version of reverse; split: taking a predicate
and a list and returning two lists, one whose elements satisfy
the predicate and another whose elements do not satisfy the

82

predicate; fix: factorial function programmed using the Y
combinator for a heavy use of higher-order functions; map:
standard map function; union: taking two sets and return-
ing the union; index: taking an item and a list and returning
the index of the item in the list, or —1 if the item is not in
the list.

Table [1] gives the results of symbolic evaluation of the
time-bound functions for these example programs on inputs
of various sizes. Several counts of the primitive operations
are merged to fit the table on the page. All numbers are
exact symbolic counts. They are verified by using a modified
evaluator.

Table 2] shows the calculated and the measured worst-case
running time for these programs with various input sizes.
The item me/ca is the measured time expressed as a percent-
age of the calculated time. In general, all measured times are
closely bounded by the calculated times (with about 70-98%
accuracy).

6. RELATED WORK AND CONCLUSION

An overview of comparison with related work in time anal-
ysis appears in Section Certain detailed comparisons have
also been discussed while presenting our method. This sec-
tion summarizes them, compares with other related work,
and concludes.

Compared to work in algorithm analysis and program
complexity analysis [23] [36] |35 [41], this work counts sym-
bolic primitive parameters precisely, so it allows us to cal-
culate actual time bounds and validate the results with ex-
perimental measurements. There is also work on analyzing
average-case complexity [14], which has a different goal than
worst-case bounds. Compared to work in systems |37} |30}
29, [24], this work explores program analysis and transfor-
mation techniques to make the analysis automatic, efficient,
and accurate, overcoming the difficulties caused by the in-
ability to obtain loop bounds, recursion depths, or execution
paths automatically and precisely. There is also work for
measuring primitive parameters of Fortran programs for the
purpose of general performance prediction 34} [33], where
information about execution paths was obtained by running
the programs on a number of inputs; for programs such as in-
sertion sort whose best-case and worst-case execution times
differ greatly, the predicted time using that method could

Table 1: Results of symbolic evaluation of time-bound functions (

exact counts).

program| size var ref | constant cons null? | car/cdr +/-| compare if | let(rec) | lambda call
ack (3,1) 472 328 0 0 0 153 164 164 0 0 106
(3,5) 190848 127560 0 0 0 63533 63780 63780 0 0 42438

(3,7) 3122332 | 2082904 0 0 0| 1040439 | 1041452 | 1041452 0 0 693964

(3,9) 50237624 | 33497192 0 0 0]16744513 | 16748596 | 16748596 0 011164370

ack (3,1) 277 171 0 0 0 98 62 62 6 4 111
curried (3,5) 105989 63787 0 0 0 42194 21346 21346 6 4 42443
(3,7) 1734421 | 1041459 0 0 0 692954 347492 347492 6 4 693969

(3,9) 27908901 | 16748603 0 0 0111160290 | 5584230 | 5584230 6 4111164375

tak-cps| (19,8,1) 16121904 | 1560183 0 0 0| 1560183 | 2080245 | 2080245 1| 1560185 | 3640430
(19,9,1) 46538205 | 4503696 0 0 0| 4503696 | 6004929 | 6004929 1| 4503698 | 10508627

(19,9,3) 2582251 249894 0 0 0 249894 333193 333193 1 249896 583089
(19,10,1) || 122680095 | 11872266 0 0 0] 11872266 | 15829689 | 15829689 1| 11872268 | 27701957
reverse 10 299 10 55 66 110 0 0 66 0 0 66
20 1094 20 210 231 420 0 0 231 0 0 231

50 6479 50 1275 1326 2550 0 0 1326 0 0 1326

100 25454 100 5050 5151 10100 0 0 5151 0 0 5151

200 100904 200 20100 20301 40200 0 0 20301 0 0 20301

500 627254 500 | 125250 | 125751 | 250500 0 0 125751 0 0 125751

1000 2504504 1000 | 500500| 501501 | 1001000 0 0 501501 0 0 501501

2000 10009004 2000 | 2001000 | 2003001 | 4002000 0 0| 2003001 0 0| 2003001

rev-cps 10 422 11 55 66 110 0 0 66 0 56 123
20 1537 21 210 231 420 0 0 231 0 211 443

50 9082 51 1275 1326 2550 0 0 1326 0 1276 2603

100 35657 101 5050 5151 10100 0 0 5151 0 5051 10203

200 141307 201 20100 20301 40200 0 0 20301 0 20101 40403

500 878257 501 | 125250 | 125751 | 250500 0 0 125751 0 125251 251003

1000 3506507 1001 | 500500| 501501 | 1001000 0 0 501501 0 500501 | 1002003

2000 14013007 2001 | 2001000 | 2003001 | 4002000 0 0| 2003001 0| 2001001 | 4004003

split 10 128 33 12 11 30 0 20 41 0 10 32
20 248 63 22 21 60 0 40 81 0 20 62

50 608 153 52 51 150 0 100 201 0 50 152

100 1208 303 102 101 300 0 200 401 0 100 302

200 2408 603 202 201 600 0 400 801 0 200 602

500 6008 1503 502 501 1500 0 1000 2001 0 500 1502

1000 12008 3003 1002 1001 3000 0 2000 4001 0 1000 3002

2000 24008 6003 2002 2001 6000 0 4000 8001 0 2000 6002

fix 10 275 22 0 0 0 20 11 11 0 212 233
20 545 42 0 0 0 40 21 21 0 422 463

50 1355 102 0 0 0 100 51 51 0 1052 1153

100 2705 202 0 0 0 200 101 101 0 2102 2303

200 5405 402 0 0 0 400 201 201 0 4202 4603

500 13505 1002 0 0 0 1000 501 501 0 10502 11503

1000 27005 2002 0 0 0 2000 1001 1001 0 21002 23003

2000 54005 4002 0 0 0 4000 2001 2001 0 42002 46003

map 10 84 2 10 11 20 10 0 11 0 1 22
20 164 2 20 21 40 20 0 21 0 1 42

50 404 2 50 51 100 50 0 51 0 1 102

100 804 2 100 101 200 100 0 101 0 1 202

200 1604 2 200 201 400 200 0 201 0 1 402

500 4004 2 500 501 1000 500 0 501 0 1 1002

1000 8004 2 1000 1001 2000 1000 0 1001 0 1 2002

2000 16004 2 2000 2001 4000 2000 0 2001 0 1 4002

union 10 705 10 10 121 230 0 100 231 10 0 121
20 2605 20 20 441 860 0 400 861 20 0 441

50 15505 50 50 2601 5150 0 2500 5151 50 0 2601

100 61005 100 100 10201 20300 0 10000 20301 100 0 10201

200 242005 200 200 40401 80600 0 40000 80601 200 0 40401

500 1505005 500 500 | 251001 | 501500 0 250000 501501 500 0 251001

1000 6010005 1000 1000 | 1002001 | 2003000 0| 1000000 | 2003001 1000 0| 1002001

2000 || 24020005 2000 2000 | 4004001 | 8006000 0| 4000000 | 8006001 2000 0| 4004001

index 10 72 11 0 11 20 9 10 21 1 12 21
20 142 21 0 21 40 19 20 41 1 22 41

50 352 51 0 51 100 49 50 101 1 52 101

100 702 101 0 101 200 99 100 201 1 102 201

200 1402 201 0 201 400 199 200 401 1 202 401

500 3502 501 0 501 1000 499 500 1001 1 502 1001

1000 7002 1001 0 1001 2000 999 1000 2001 1 1002 2001

2000 14002 2001 0 2001 4000 1999 2000 4001 1 2002 4001

83

Table 2: Calculated and measured worst-case times (in milliseconds.)

ackermann ackermann (curried) takeuchi (CPS
size|| calculated|measured| me/cal|calculated|measured| me/ca size|| calculated|measured| me/ca
(3,1) 0.03207| 0.02861{89.2002 0.02059] 0.01503[72.9892|[(19,8,1) 576.058| 509.402|88.4289
(3,5) 12.8462| 10.6540(82.9348 7.89957| 5.33000(67.4719|| (19,9,1) 1662.87| 1473.49|88.6111
(3,7) 210.051| 174.943|83.2863 129.241| 89.1780(69.0009|| (19,9,3) 92.2675| 81.6250|88.4655
(3,9) 3379.19| 2888.33|85.4739 2079.53| 1517.27|72.9621||(19,10,1) 4383.53| 3912.50(89.2543
reverse reverse (CPS) split
size|| calculated|measured] me/cal[calculated|measured] me/cal|calculated[measured| me/ca
10 0.02410| 0.01854(76.9136 0.02872| 0.02395(83.3632 0.00877| 0.00769|87.7389
20 0.08873| 0.06615|74.5462 0.10591| 0.08774|82.8435 0.01710| 0.01489|87.0741
50 0.52675| 0.38781|73.6221 0.63007| 0.52147|82.7634 0.04211| 0.03588|85.2049
100 2.07054| 1.53300{74.0385 2.47907| 2.06100|83.1357 0.08378| 0.07103|84.7775
200 8.20967| 6.03300|73.4864 9.83483| 8.13700|82.7365 0.16713| 0.14151|84.6698
500 51.0395| 37.9980(74.4481 61.1641| 50.6200|82.7609 0.41717| 0.35321|84.6673
1000 203.797| 158.995(78.0164 244.252| 202.042|82.7185 0.83391| 0.70749|84.8399
2000 814.470| 656.137|80.5600 976.205| 815.471|83.5348 1.66738| 1.40501|84.2642
fix map union index
size|| calculated|measured| me/cal[calculated|measured| me/cal|calculated|measured| me/cal|calculated|measured| me/ca
10 0.02059| 0.01981{96.1887 0.00578| 0.00476(82.2714 0.04512| 0.03547|78.5966 0.00476| 0.00344(72.26890
20 0.04087| 0.03879|94.9079 0.01133| 0.00900|79.4816 0.16680| 0.13401|80.3414 0.00894| 0.00647|72.37136
50 0.10169| 0.09605|94.4445 0.02798| 0.02169|77.5121 0.99204| 0.80972|81.6212 0.02148| 0.01561|72.67225
100 0.20308| 0.19183|94.4597 0.05572| 0.04360|78.2375 3.90155| 3.08000|78.9429 0.04273| 0.03073|71.91668
200 0.40584| 0.38599|95.1080 0.11121| 0.08781|78.9532 15.4734| 12.1280(78.3794 0.08575| 0.06166|71.90670
500 1.01413| 0.97661|96.3001 0.27768| 0.22843|82.2614 96.2121| 75.1470|78.1055 0.21951| 0.15412{70.21092
1000 2.02794| 1.93700|95.5154 0.55513| 0.48007|86.4776 384.186| 315.918|82.2304 0.43402| 0.31197|71.87917
2000 4.05556| 4.00700|98.8024 1.11003| 0.95652(86.1700 1535.42| 1260.83(82.1163 1.05827| 0.77977|73.68346

be very inaccurate.

Reistad and Gifford [31] studied static analysis that helps
estimating running times in the presence of first-class pro-
cedures, and the results of the estimation were used for dy-
namic parallelization. Their analysis produces only a for-
mula that needs to be computed at run time after infor-
mation about the particular input is available; they do not
analyze time bounds in the presence of incomplete knowl-
edge about the input as we do. Also, their cost systems
do not handle user-defined recursive procedures as we do;
as pointed out by Hughes and others [20], the extension to
user-defined recursive procedures is a major one that affects
the entire system. They also mention that they handle im-
perative constructs, but the analysis and transformations
given do not handle mutable data, so relevant constructs
can be simulated easily using bindings.

Several type systems [20} |19, |7] have been proposed for
reasoning about space and time bounds, and some of them
include implementations of type checkers |20, [7]. These do
not analyze cost, or build cost functions. Programmers are
required to annotate their programs with cost functions as
types; some programs have to be rewritten to have feasible
types 20} [19].

A number of techniques have been studied for obtaining
loop bounds or execution paths for analyzing time bound [29]
2, |11} |16} (18, |5]. Manual annotations |29} [24] are inconve-
nient and error-prone [2]. Automatic analysis of such infor-
mation has two main problems. First, even when a precise
loop bound can be obtained by symbolic evaluation of the
program [11], separating the loop and path information from
the rest of the analysis is in general less accurate than an in-
tegrated analysis |28]. Second, approximations for merging
paths from loops, or recursions, very often lead to nontermi-
nation of the time analysis, not just looser bounds [11} [16|
28]. Some new methods, while powerful, apply only to cer-
tain classes of programs [18]. In contrast, our method allows
recursions, or loops, to be considered naturally in the over-
all execution-time analysis based on partially known input
structures. In addition, our method does not merge paths

84

from recursions, or loops; this may cause exponential time
complexity in the analysis, but our experiments on test pro-
grams show that the analysis is still tractable for input sizes
in the thousands. We have also studied simple but powerful
optimizations to speed up the analysis.

In the analysis for cache behavior by Ferdinand and oth-
ers [12], loops are transformed into recursive calls, and a pre-
defined callstring level determines how many times the fixed
point analysis iterates and thus how the analysis results are
approximated. Our method allows the analysis to perform
the exact number of recursions, or iterations, for the given
partial input data structures. Recent work by Lundqvist and
Stenstrom [28] is based on essentially the same ideas as ours.
They apply the ideas at machine instruction level and can
more accurately take into account the effects of instruction
pipelining and data caching, but their method for merging
paths for loops would lead to nonterminating analysis for
many programs, for example, a program that computes the
union of two lists with no repeated elements. We apply
the ideas at source-level, and our experiments show that we
can calculate more accurate time bound and for many more
programs than merging paths, and the calculation is still
efficient.

The idea of using partially known input structures origi-
nates from Rosendahl [32]. We have extended it to manipu-
late primitive parameters, to handle binding constructs, and
most importantly, to include higher-order functions. The
power of our method also lies in the optimizations of the
time-bound function using partial evaluation, incremental
computation, and transformations of conditionals to make
the analysis more efficient and more accurate. Partial eval-
uation [4} 21|, incremental computation |27} 26|, and other
transformations have been studied intensively in program-
ming languages. Their applications in our time-bound anal-
ysis are particularly simple and clean; the resulting trans-
formations are fully automatic and efficient.

We have started to explore a suite of new language-based
techniques for time analysis, in particular, analyses and op-
timizations for further speeding up the evaluation of the

time-bound function. To make the analysis even more accu-
rate and efficient, we can automatically generate measure-
ment programs for all maximum subexpressions that do not
include transfers of control; this corresponds to the large
atomic-blocks method [30]. We also believe that the lower-
bound analysis is symmetric to the upper-bound analysis,
by replacing maximum with minimum at all conditional
points; there, special pruning actually allows us to speed
up the analysis even further. Finally, we plan to accom-
modate more lower-level dynamic factors for timing at the
source-language level [24,|12]. In particular, we have started
applying our general approach to analyze space consump-
tion [38] and hence to help predict garbage-collection and
caching behavior.

In conclusion, the approach we developed is based en-
tirely on program analysis and transformations at the source
level. The methods and techniques are intuitive; together
they produce automatic tools for analyzing time bounds ef-
ficiently and accurately. We find the accuracy of the experi-
mental results very encouraging, especially considering that
we are analyzing recursive programs at source-level, with
garbage collection, and currently without special treatment
for instruction pipelining or cache effects.

7. REFERENCES

[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure
and Interpretation of Computer Programs. MIT Press
and McGraw-Hill, 1985.

P. Altenbernd. On the false path problem in hard
real-time programs. In Proceedings of the 8th
FEuroMicro Workshop on Real-Time Systems, pages
102-107, L’Aquila, June 1996.

R. Arnold, F. Mueller, D. B. Whalley, and M. G.
Harmon. Bounding worst-case instruction cache
performance. In Proceedings of the 13th IEEE
Real-Time Systems Symposium. IEEE CS Press, Los
Alamitos, Calif., 1994.

B. Bjgrner, A. P. Ershov, and N. D. Jones, editors.
Partial Evaluation and Mized Computation.
North-Holland, Amsterdam, 1988.

[6] W. N. Chin, and S. C. Khoo. Calculating Sized Types
In ACM Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 62-72,
Boston, Massachusetts, United States, January 2000
J. Cohen. Computer-assisted microanalysis of
programs. Commun. ACM, 25(10):724-733, Oct. 1982.
K. Crary and S. Weirich. Resource bound
certification. In Conference Record of the 27th Annual
ACM Symposium on Principles of Programming
Languages. ACM, New York, Jan. 2000.

R. K. Dybvig. The Scheme Programming Language,
Second edition. Prentice-Hall, Englewood Cliffs, N.J.,
1996.

R. K. Dybvig. Chez Scheme User’s Guide. Cadence
Research Systems, 1998

J. Engblom, P. Altenbernd, and A. Ermedahl.
Facilitating worst-case execution time analysis for
optimized code. In Proceedings of the 10th EuroMicro
Workshop on Real-Time Systems, Berlin, Germany,
June 1998.

A. Ermedahl and J. Gustafsson. Deriving annotations
for tight calculation of execution time. In In

2]

[4]

(6]

7]

85

(12]

(13]

[25]

Proceedings of Euro-Par’97, volume 1300 of Lecture
Notes in Computer Science, pages 1298-1307.
Springer-Verlag, Berlin, Aug. 1997.

C. Ferdinand, F. Martin, and R. Wilhelm. Applying
compiler techniques to cache behavior prediction. In
Proceedings of the ACM SIGPLAN 1997 Workshop on
Languages, Compilers, and Tools for Real-Time
Systems, pages 37-46, 1997.

P. Flajolet, B. Salvy, and P. Zimmermann.
Lambda-Upsilon-Omega: An assistant algorithms
analyzer. In T. Mora, editor, Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes,
volume 357 of Lecture Notes in Computer Science,
pages 201-212, Rome, Italy, July 1989.
Springer-Verlag, Berlin.

P. Flajolet, B. Salvy, and P. Zimmermann. Automatic
average-case analysis of algorithms. Theoretical
Computer Science, Series A, 79(1):37-109, Feb. 1991.
R. P. Gabriel. Performance and Evaluation of LISP
Systems. MIT Press series in computer systems. MIT
Press, Cambridge, MA, 1985

J. Gustafsson and A. Ermedahl. Automatic derivation
of path and loop annotations in object-oriented
real-time programs. Journal of Parallel and
Distributed Computing Practices, 1(2), June 1998.

M. G. Harmon, T. P. Baker, and D. B. Whalley. A
retargetable technique for predicting execution time.
In Proceedings of the 11th IEEE Real-Time Systems
Symposium, pages 68-77. IEEE CS Press, Los
Alamitos, Calif., Dec. 1992.

C. Healy, M. Sjodin, V. Rustagi, and D. Whalley.
Bounding loop iterations for timing analysis. In
Proceedings of the IEEE Real-Time Applications
Symposium. IEEE CS Press, Los Alamitos, Calif.,
June 1998.

J. Hughes and L. Pareto. Recursion and dynamic
data-structures in bounded space: Towards embedded
ML programming. In Proceedings of the 1999 ACM
SIGPLAN International Conference on Functional
Programming, pages 70-81. ACM, New York, Sept.
1999.

J. Hughes, L. Pareto, and A. Sabry. Proving the
correctness of reactive systems using sized types. In
Conference Record of the 23rd Annual ACM
Symposium on Principles of Programming Languages,
pages 410-423. ACM, New York, Jan. 1996.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice-Hall, Englewood Cliffs, N.J., 1993.

D. E. Knuth. The Art of Computer Programming,
volume 1. Addison-Wesley, Reading, Mass., 1968.

D. Le Métayer. Ace: An automatic complexity
evaluator. ACM Trans. Program. Lang. Syst.,
10(2):248-266, Apr. 1988.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Park, S.-M. Moon, and
C.-S. Kim. An accurate worst case timing analysis for
RISC processors. IEEE Trans. Softw. Eng.,
21(7):593-604, July 1995.

Y. A. Liu and G. Gémez. Automatic accurate
time-bound analysis for high-level languages. In
Proceedings of the ACM SIGPLAN 1998 Workshop on

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]

Languages, Compilers, and Tools for Embedded
Systems, volume 1474 of Lecture Notes in Computer
Science, pages 31-40. Springer-Verlag, June 1998.

Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static
caching for incremental computation. ACM Trans.
Program. Lang. Syst., 20(3):546-585, May 1998.

Y. A. Liu and T. Teitelbaum. Systematic derivation of
incremental programs. Sci. Comput. Program.,
24(1):1-39, Feb. 1995.

T. Lundqvist and P. Stenstrom. Integrating path and
timing analysis using instruction-level simulation
techniques. Technical Report No. 98-3, Department of
Computer Engineering, Chalmers University of
Technology, Goéteborg, Sweden, 1998.

C. Y. Park. Predicting program execution times by
analyzing static and dynamic program paths.
Real-Time Systems, 5:31-62, 1993.

C. Y. Park and A. C. Shaw. Experiments with a
program timing tool based on source-level timing
schema. IEEE Comput., 24(5):48-57, 1991.

B. Reistad and D. K. Gifford. Static dependent costs
for estimating execution time. In Proceedings of the
1994 ACM Conference on LISP and Functional
Programming, pages 65-78. ACM, New York, June
1994.

M. Rosendahl. Automatic complexity analysis. In
Proceedings of the 4th International Conference on
Functional Programming Languages and Computer
Architecture, pages 144-156. ACM, New York, Sept.
1989.

R. H. Saavedra and A. J. Smith. Analysis of
benchmark characterization and benchmark
performance prediction. ACM Transactions on
Computer Systems, 14(4):344-384, Nov. 1996.

86

(34]

37]

(38]

(39]

(40]

R. H. Saavedra-Barrera, A. J. Smith, and E. Miya.
Machine characterization based on an abstract
high-level language machine. IEEE Transactions on
Computers, 38(12):1659-1679, Dec. 1989. Special issue
on Performance Evaluation.

D. Sands. Calculi for Time Analysis of Functional
Programs. PhD thesis, Department of Computing,
Imperial College, London, U.K., Sept. 1990.

D. Sands. Complexity analysis for a lazy higher-order
language. In Proceedings of the 3rd Furopean
Symposium on Programming, volume 432 of Lecture
Notes in Computer Science, pages 361-376.
Springer-Verlag, Berlin, May 1990.

A. Shaw. Reasoning about time in higher level
language software. IEEE Trans. Softw. Eng.,
15(7):875-889, July 1989.

L. Unnikrishnan, S. D. Stoller, and Y. A. Liu.
Automatic accurate stack space and heap space
analysis for high-level languages. Technical report,
Computer Science Department, Indiana University. To
appear.

B. Wegbreit. Mechanical program analysis. Commun.
ACM, 18(9):528-538, Sept. 1975.

D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard.
Value dependence graphs: Representation without
taxation. In Conference Record of the 21st Annual
ACM Symposium on Principles of Programming
Languages. ACM, New York, Jan. 1994.

P. Zimmermann and W. Zimmermann. The automatic
complexity analysis of divide-and-conquer algorithms.
In Computer and Information Sciences VI. Elsevier,
1991.

	Introduction
	Language-based approach
	Constructing time-bound function
	Optimizing time-bound function
	Implementation and experimentation
	Related work and conclusion
	REFERENCES -9pt

